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a b s t r a c t

Experimental and numerical methods to identify the linear viscoelastic properties of flax fibre reinforced
polymer (FFRP) composite are presented in this study. The method relies on the evolution of storage
modulus and loss factor as observed through the frequency response. Free-free symmetrically guided
beams were excited in the dynamic range of 10 Hz to 4 kHz with a swept sine excitation focused around
their first modes. A fractional derivative Zener model has been identified to predict the complex moduli.
A modified ply constitutive law has been then implemented in a classical laminates theory calculation
(CLT) routine. Overall, the Zener model fitted the experimental results well. The storage modulus was not
frequency dependant, while the loss factor increased with frequency and reached a maximum value for a
fibre orientation of 70�. The damping of FFRP was, respectively, 5 and 2 times higher than for equivalent
carbon and glass fibres reinforced epoxy composites.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Structural parts of aircraft and land vehicles are submitted to
dynamic loading. Excitations coming from the powertrain, road
surfaces and aerodynamic flows, cause mechanical vibrations. In
order to improve the acoustical and vibrational comfort, natural
fibre reinforced polymer composites, exhibiting interesting dissi-
pative properties, can be used. Indeed, compared to conventional
composite materials, the damping performance of flax fibre rein-
forced polymer (FFRP) can be, respectively, twice or three times
higher than that of glass or carbon fibre reinforced polymer com-
posites [1,2].

Damping in undamaged composite materials is induced by
several microscopic level mechanisms, such as viscoelastic elon-
gation of the matrix and/or fibres, friction between both compo-
nents at their interfaces. Moreover, in the particular case of flax
fibre reinforced polymer composites, the friction between fibres
inside bundles represents an additional mechanism of dissipation
of energy, which can also increase this phenomenon [3]. At meso-
scale level, parameters such as layer orientation, interlaminar ef-
fects and vibration coupling can also affect energy dissipation.

In order to assess the damping within materials, vibration

techniques have the advantage of rapidly exploring a wide range of
frequencies (10 Hze1 kHz). Thus, many authors have studied the
frequency dependence of compositematerials [4e7]. Crane et al. [8]
have proposed an analytical approach to predict the frequency
dependence of laminates properties using classical laminates the-
ory (CLT) in complex domains. Duke et al. [9] have tested several
flax fibre reinforced composites with different matrices, and have
compared them to glass and carbon fibre reinforced composite.
They observed that the damping properties obtained with the FFRP
were generally better than those of the carbon and glass fibre
reinforced composites.

The frequency dependence is a typical feature of viscoelastic
materials. This dependence induces variations of the complex
moduli when the frequency of excitation changes. In order to assess
these variations, it is necessary to understand the material consti-
tutive equations that relate the stresses to the strains with respect
to time or frequency [10], with the help of linear viscoelasticity
theory. These relations are expressed by linear differential equa-
tions or convolution integrals. They have the main benefit of being
expressed both in frequency and time domains.

The present study aims at presenting a method dedicated to the
identification of the evolution of complex moduli of FFRP laminates
in a large frequency band with the help of a fractional derivative
Zener model. This identification has been done thanks to experi-
mental tests on a specific device between 10 Hz and 4 kHz.* Corresponding author.
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2. Linear viscoelastic model

Materials submitted to mechanical loading store energy by
elastic deformation. For purely elastic materials, this energy is
totally and immediately returned during the unloading phase.
However, in the case of viscoelastic materials, the energy stored is
completely returned but with some delay due to inner rearrange-
ments. For such materials, the stress depends on the strain history
[10]. Several models describing the behaviour of a viscoelastic
material in the structural dynamic domain are available in the
literature. Among them, the fractional derivative Zener model
(Fig. 1) has been used by many authors to describe the viscoelastic
behaviour [11]. This model is mathematically described in Eq. (1),
where sðtÞ; εðtÞ; t, a are respectively the stress and strain as a
function of time, the relaxation time and the a-order fractional
derivative coefficient (0 < a < 1). Da½�� is an a-order fractional de-
rivative operator. The mechanical stiffness E0 and E∞ are, respec-
tively, the dynamic modulus at very low frequency and at high
frequency. The fractional derivative model is described in Fig. 1.

sðtÞ þ taDa½sðtÞ� ¼ E0εðtÞ þ E∞taDa½εðtÞ� (1)

In the case of a steady state harmonic excitation, the complex
modulus ðE*Þ is derived from Eq. (2), where the fractional derivative
operator Da½�� is replaced by a multiplication by ðjuÞa. j is the
imaginary unit and un ¼ ut.

E*ðuÞ ¼ s*ðuÞ
ε
*ðuÞ ¼

E0 þ E∞ðjunÞa
1þ ðjunÞa

(2)

Thus, it is possible to write Eq. (2) in the form of Eq. (3), inwhich
hðuÞ ¼ E00ðuÞ

E0ðuÞ represents the material's loss factor. The real part E0ðuÞ
of E*, so called storage modulus, represents the elastic behaviour of
the tested material. The imaginary part E00ðuÞ or loss modulus
represents the viscous or damping behaviour of the material.

E*ðuÞ ¼ E0ðuÞ þ jE00ðuÞ ¼ E0ðuÞ½1þ jhðuÞ� (3)

Using the constitutive equation (Eq. (1)), E0ðuÞ and hðuÞ can be
expressed by Eqs. (4) and (5), where c¼E∞

E0
.

E0ðuÞ ¼ E0
1þ ðcþ 1Þcos

�
ap
2

�
ua
n þ cu2a

n

1þ 2 cos
�
ap
2

�
ua
n þ u2a

n

(4)

hðuÞ ¼
ðc� 1Þsin

�
ap
2

�
ua
n

1þ ðcþ 1Þcos
�
ap
2

�
ua
n þ cu2a

n

(5)

3. Classical laminate theory applied to viscoelasticity

With the help of the individual properties of each ply, the CLT
allows one to compute the elastic properties of a stack of

unidirectional (UD) composite plies (i.e. longitudinal and trans-
verse storagemoduli, Poisson's ratios and shear moduli). In order to
establish a viscoelastic version of CLT, the so-called correspondence
principle [10] has been used. Initially introduced on homogeneous
materials, this principle has been extended to heterogeneous and
composite materials by Hashin [12]. In the case of a sinusoidal
steady-state excitation, it is possible to measure and replace the
elastic properties by the appropriate complex ones, i.e. the con-
version of the elastic solutions to viscoelastic ones. Thus, the lam-
inate's relations derived from the CLT can be used to predict the
overall viscoelastic moduli of the laminate from the elementary ply
properties. According to the elastic CLT method, the complex
constitutive relation linking forces (N*) and bending moments (M*)
to strains (ε*) andmembrane curvatures (k*) can be expressed by Eq.
(6).
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The complex laminate stiffness matrices [ABD]* are given by Eqs.
(7)e(9), based on the complex reduced stiffness matrix ½~Q*

ijðuÞ�,
where hn represents the position of the nth ply in the thickness of
the laminate and N is the total number of plies (Fig. 2).
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The nth layer inwhich plies are oriented with an angle ðanÞwith
respect to the loading direction, the coefficients ½~Q*

ij�n are obtained
from ½Q*

11ðuÞ�n using Eqs. (10)e(15), where
pn ¼ cos an and qn ¼ sin an. The ½Q*

11�n are the complex reduced
stiffness.
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Fig. 1. Fractional derivative Zener model. Fig. 2. Laminate's architecture representation [12].
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