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a b s t r a c t

Investments in generation are high risk, and the introduction of renewable technologies exacerbated con-
cern over capacity adequacy in future power systems. Long-termgeneration investment (LTGI)models are
often used by policymakers to provide future projections given different input configurations. To under-
stand both uncertainty around these projections and the ways they relate to the real-world, LTGI models
can be calibrated and then used to make predictions or perform a sensitivity analysis (SA). However, LTGI
models are generally computationally intensive and so only a limited number of simulations can be car-
ried out. This paper demonstrates that the techniques of Bayesian emulation can be applied to efficiently
perform calibration, prediction and SA for such complex LTGI models.

A case study relating to GB power system generation planning is presented. Calibration reduces the
uncertainty over a subset of model inputs and estimates the discrepancy between the model and the real
power system. A plausible range of future projections that is consistent with the available knowledge
(both historical observations and expert knowledge) can be predicted. The most important uncertain
inputs are identified through a comprehensive SA. The results show that the use of calibration and SA
approaches enables better decision making for both investors and policymakers.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

There is a growing concern over capacity adequacy in future
power systems due to a number of risks that may discourage
investment in generation capacity [1–4]. These risks exposed to
investors range from policy (e.g., VOLL pricing, CO2 prices and
renewable targets) andmarket (e.g., fuel cost, demand forecast and
electricity price) risks, to technology (e.g., capital cost) and finance
(e.g., hurdle rate) risks [4] and they create uncertainty (i.e., im-
perfect knowledge) in the financial returns of an investment. One
prominent feature in future power systems is that market risks in-
crease with the amount of variable wind power that contributes to
higher price volatility and lower (on average) and more uncertain
load factors for thermal power plants [5].

Various long-term generation investment (LTGI) models have
been developed for predicting real-world generation projections
and hence guiding investment decisions and the design of energy
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policy [6–13]. From the perspective of policymakers, who wish
to adequately account for uncertainty around future generation
projections related to the real world, it becomes increasingly
important to consider two main sources of uncertainty existing
in these models. One is input uncertainty representing investment
risks and/or model assumptions that affect or shape the direction
of investment decisions [4]. The other one is structural uncertainty
which concerns the discrepancy between the model and the real-
world complex investment decision-making process. Questions
regarding validation and understanding of these LTGI models
need to be carefully addressed before model outcomes can be
interpreted and applied.

Calibration or history matching is a valuable tool for validating
a model and linking it to the real world when historical observa-
tions are available. This typically involves calibration of a subset of
uncertain model parameters against historical observations of the
model outputwhilst modeling the discrepancy between themodel
and the real system. Uncertainty of calibration parameters, which
may be specified ex ante as a probability distribution based on the
prior beliefs of the model user or other experts, can be reduced
through calibration (i.e., by identifying values of calibration param-
eters that are plausible with respect to prior beliefs and historical
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Nomenclature

Sets and functions

T Set of planning years of interest, indexed by t .
P Set of past planning years.
F Set of future planning years.
G Set of generation technologies, indexed by g .
J Subset of input variables, indexed by i, j.
ρ Set of fuel types including uranium, coal, gas, and

carbon.
f (·), f̃ (·) Functions of the simulator and the emulator,

respectively.
hi(·) Functions of themainmoduleswithin the simulator.
GP (·, ·) Gaussian process function.
p(·) Probability distribution function.

Parameters and variables

x Vector of input variables.
u, θ, ω Vector of control inputs, calibration parameters and

forcing inputs, respectively.
I Total number of input variables.
yBg,t , y

M
g,t , y

D
g,t Investment, mothballing and de-mothballing

of generation capacities of type g at year t ,
respectively.

yg,t Installed generation capacity of type g in operation
at year t .

yobs Vector of historical observations of elements yobs,t
over P .

Fρ,t Fuel price of type ρ at year t .
MRρ Reference trend level of annual fuel prices of type ρ.
Pρ Multiplier applied to the trend level of fuel type ρ.
Pmarkup,t Hourly price markup payment at year t .
θmarkup Markup cut-in point where the markup approaches

zero.
NDt Hourly net demand (demand minus wind genera-

tion) at year t .
AGg,t Hourly available thermal capacity subject to forced

outages at year t .
CM t Hourly capacity margin (hourly available thermal

capacity minus hourly net demand) at year t .
VOLL Value of lost load (VOLL).
Pe,t Energy prices at year t .
Cg,t Generation cost of generation type g at year t .
LOLEt Loss-of-load expectation at year t .
RT g,t Retirement of existing generators of type g at year t .
Vt Net Present Value (NPV) of an investment at year t .
τf The furthest simulation year ahead of the current

decision year.
VVaR,t Value at Risk (VaR) of Vt .
θVaR Assumed level of risk aversion.
β, σ 2, γ Hyperparameters in the Gaussian Process model.
δ Model discrepancy function.
D Design points of chosen input variables.
Kf Principal component basis vectors of elements

k1, . . . , kpf .
di The ith basis function for model discrepancy.
ϑi Weight of the ith basis function for model discrep-

ancy.
λϑ Hyperparameter in the model discrepancy.
pδ Total number of basis functions for model discrep-

ancy.
SJ Measure of sensitivity to a subset of inputs xJ.
SVJ Variance of the main effect of a subset of inputs xJ.
Var(y) Total output variance.

observations of themodel output). To the best of our knowledge, no
such formal calibration of LTGImodels has previously been done. If
a calibration against historical observations is not performed, this
severely limits the conclusions which can be drawn regarding in-
vestment decisions and policy design in the real system.

Sensitivity analysis (SA) is also often applied to LTGI models
in order to understand how model outputs react to changes in
model inputs. SA in [11,6,9,14,13,15] was carried out using a
simple one-at-a-time method, where each uncertain parameter
is varied independently across a range of possible values while
all others are held constant. The one-at-a-time method fails to
treat the analysis with sufficient care (i.e., no formal weight or
probability is attached to each outcome), and is incapable of taking
into account interactions among different inputs. Multi-way SA
can identify the combined effects of two or more inputs, through
varying the inputs together using a large and highly structured set
of simulator runs [16]. Probabilistic SA is an alternative approach
to multi-way SA that can address interactions and nonlinearities.
The input uncertainty is explicitly described as a scenario tree
with associatedprobabilities (discrete) or a probability distribution
(continuous) in probabilistic SAwhile it is treated only implicitly in
the preceding methods. A wide ranging review of uncertainty and
sensitivity analysis in the context of power system planning may
be found in [17].

A conventional way to conduct a formal calibration or a prob-
abilistic SA is the Monte Carlo (MC) method of drawing random
configurations of inputs from their uncertainty distributions, run-
ning the model for each input configuration to obtain the set of
outputs, and constructing the output distribution (which can in
principle be evaluated to any desired accuracy). Computationally
intensive models associated with large studies tend to have high-
dimensional inputs. TheMC-basedmethodmay require thousands
of (if notmore) individual evaluations in order to avoid sparse cov-
erage of the model input space. It may be practically impossible
for complex models to achieve very dense coverage of input space
even if very large computer resource is available [17]. For exam-
ple, a single run of a LTGI model may take many hours [18,6] or
even many days or weeks with more detailed modeling of short-
term operations of power plants [19,20]. In addition, the outputs
of interest (e.g., generation projections) for a LTGI model are of-
ten high-dimensional due to the long planning horizon; this adds
to the complexity of calibration and SA. Even where a very large
number of runsmay be possible by acquiring additional computing
resource, the approach adopted in this paper allows results to be
obtained in a systematic way with a smaller computing resource.

This paper will carry out calibration and probabilistic SA
of a computationally intensive LTGI model (i.e., the simulator)
with careful management of two sources of uncertainty—input
uncertainty and structural uncertainty. A highly-efficient Bayesian
approach described in [21–24] is employed. Fig. 1 shows a diagram
of the proposed Bayesian framework, which is based on a Gaussian
process model (i.e., the emulator) that is built as an approximation
of the simulator using a limited number of simulation runs (i.e.,
training data). The emulator can efficiently deal with the tasks
of: calibration; probabilistic SA; prediction—estimation of model
outputs at input configurations that have not been tested; and
uncertainty analysis that is most relevant when those outputs
provide guidance in the making of some decision (such as using
a LTGI simulator in setting VOLL for maintaining the LOLE target).

The main contributions of this paper can be summarized as
follows.
(1) Use of Bayesian emulation to manage uncertainties arising

from the limited number of runs that are possible and conse-
quent sparse coverage of the input space; this is the first time
that such emulation techniques have been used to manage
these uncertainties when performing model calibration and
uncertainty analysis associated with generation investment.
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