Tetrahedron Letters 57 (2016) 375-378

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Total synthesis of conolidine and apparicine

Noriyuki Takanashi, Kenta Suzuki, Mariko Kitajima, Hiromitsu Takayama*

Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan

ARTICLE INFO

ABSTRACT

Article history: Received 23 October 2015 Revised 30 November 2015 Accepted 7 December 2015 Available online 11 December 2015 A total synthesis of indole alkaloids, (\pm)-conolidine and (\pm)-apparicine, was accomplished via a gold(1)catalyzed 6-*exo-dig* cyclization to construct a piperidine ring bearing an exocyclic (*E*)-ethylidene appendage.

© 2015 Elsevier Ltd. All rights reserved.

Introduction

conolidine(1)

apparicine (2)

Keywords: Conolidine Apparicine Indole alkaloid Gold-catalyzed cyclization Total synthesis

During our chemical and pharmacological studies of analgesic indole alkaloids derived from plant resources,¹ we have found that mitragynine derivatives, such as MGM-9² and MGM-16,³ exhibited potent antinociceptive activity through the opioid receptors (Fig. 1).

Bohn et al. have disclosed the unique analgesic activity⁴ of

ō

MeO₂C

OH

MeO₂C

ΝÅ

OMe

OMe

OMe

MGM-9

MGM-16

conolidine (1),⁵ a C5-nor stemmadenine-type indole alkaloid isolated from *Tabernaemontana* species. Although they revealed that **1** was a non-opioid analgesic, they were unable to elucidate the mechanism of action. These findings have motivated us to develop an efficient method for the synthesis of C5-nor stemmadenine-type alkaloids and their derivatives, and to elucidate the exact mechanism of action of **1**. In this Letter, we report the total synthesis of

Figure 1. C5-nor stemmadenine-type indole alkaloids and mitragynine derivatives.

* Corresponding author. E-mail address: takayamah@faculty.chiba-u.jp (H. Takayama).

http://dx.doi.org/10.1016/j.tetlet.2015.12.029 0040-4039/© 2015 Elsevier Ltd. All rights reserved.

Scheme 1. Retrosynthetic analysis of (±)-1 and (±)-2.

Scheme 2. Synthesis of silyl enol ether 6.

(±)-1, which features a gold(I)-catalyzed 6-*exo-dig* cyclization reaction for the construction of a piperidine ring bearing an exocyclic (*E*)-ethylidene appendage. We also describe the transformation of 1 into (±)-apparicine (2).⁶

Results and discussion

Our retrosynthetic analysis of (\pm) -1 and (\pm) -2 is shown in Scheme 1. Key compound 3, a known Micalizio's intermediate⁴ for the synthesis of 1, would be obtained by coupling indole unit 4 with piperidine unit 5. We had anticipated that the gold(I)-catalyzed cyclization reaction of alkynyl silyl enol ethers 6^7 would be feasible for the construction of the (*E*)-ethylidene moiety embedded in 5.⁸ To the best of our knowledge, the gold(I)-catalyzed 6-*exo-dig* cyclization of silyl enol ethers having an *internal* alkynyl group has not been reported so far.^{9,10} In this context, we have been interested in the potential application of this cyclization to the synthesis of the (*E*)-ethylidene appendage. Requisite substrate **6** would be prepared from commercially available 2-pyrrolidinone in a few steps.

Our synthesis commenced with the preparation of sulfonamide **7** (Scheme 2). Treatment of 2-pyrrolidinone with 2-nitrobenzenesulfonyl chloride¹¹ and *n*-butyllithium gave nitrobenzenesulfonamide **7** in 85% yield,¹² which was further converted into alcohol **8** by reduction with sodium borohydride in a mixture of THF and methanol (10/1). Successive treatment of alcohol **8** with alkylating reagent **9**¹³ afforded internal alkyne **10** in 72% yield from **7**. IBX oxidation of **10** produced aldehyde **11** in 93% yield. Treatment of aldehyde **11** with TIPSOTf in the presence of Et₃N gave alkynyl silyl enol ether **6** as a mixture of geometrical isomers (*E*/*Z* = 1/2.6) in 87% yield.

Table 1

Results of gold(I)-catalyzed 6-exo-dig cyclization

Entry	Conditions			Products (%)			
	Au cat. (mol %)	Ag cat. (mol %)	Solv. (0.2 M)	5	12a,b	13	11
1	Ph ₃ PAuCI (5)	$AgBF_4(5)$	CH ₂ Cl ₂ /H ₂ O (10:1)	20	_	_	42
2	IPrAuCI (5)	$AgBF_4(5)$	CH ₂ Cl ₂ /H ₂ O (10:1)	52	34	-	_
3	RuPhosAuCI (5)	$AgBF_4(5)$	$CH_2Cl_2^a$	57	14	-	_
4	JohnPhosAuCI (5)	$AgBF_4(5)$	CH ₂ Cl ₂ /H ₂ O (10:1)	61	34	-	_
5	JohnPhosAuCI (5)	$AgBF_4(5)$	CH ₃ CN/H ₂ O (10:1)	4	5	_	34
6	JohnPhosAu(MeCN)SbF ₆ (5)	_	$CH_2Cl_2^a$	61	4	7	_
7	JohnPhosAu(MeCN)SbF ₆ (5)	_	CH ₂ Cl ₂ ^b	17	19	49	_
8	JohnPhosAu(MeCN)SbF ₆ (2)	-	$CH_2Cl_2^{c}$	67	29	-	-

^a 1.5 equiv water was added as proton source.

^b No water was added.

^c 1.2 equiv water was added and the reaction was conducted at 0 °C.

Download English Version:

https://daneshyari.com/en/article/5261325

Download Persian Version:

https://daneshyari.com/article/5261325

Daneshyari.com