Tetrahedron Letters 55 (2014) 1515-1518

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

An efficient, one-pot, three-component procedure for the synthesis of chiral spirooxindolopyrrolizidines via catalytic highly enantioselective 1,3-dipolar cycloaddition

etrahedro

Farbod Salahi^a, Mohammad Javad Taghizadeh^{a,b}, Hamid Arvinnezhad^a, Mehdi Moemeni^a, Khosrow Jadidi^{a,*}, Behrouz Notash^a

^a Department of Chemistry, Shahid Beheshti University, G.C. Tehran 1983963113, Iran ^b Department of Chemistry, Imam Hossein University, Tehran, Iran

ARTICLE INFO

Article history: Received 6 September 2013 Revised 8 November 2013 Accepted 26 November 2013 Available online 1 December 2013

Keywords: Catalytic asymmetric multicomponent reaction Asymmetric 1,3-dipolar cycloaddition Cyclohexane-1,2-bis(arylmethyleneamine) Azomethine ylide Chiral spirooxindolopyrrolizidines

ABSTRACT

The catalytic, highly regio-, diastereo-, and enantioselective synthesis of a small library of chiral spirooxindolopyrrolizidines via a three-component 1,3-dipolar cycloaddition reaction of azomethine ylides, derived from isatin, with electron-deficient dipolarophiles, 3-(2-alkenoyl)-1,3-oxazolidin-2-ones, is described. A chiral copper(II) complex of cyclohexane-1,2-bis(arylmethyleneamine) catalyzed this process at room temperature. The reaction mechanism is discussed on the basis of the assignment of the absolute configuration of the cycloadducts.

© 2013 Elsevier Ltd. All rights reserved.

Catalytic asymmetric multicomponent reactions (CAMCR) are efficient processes in terms of chirality economy and environmental impact. In addition, this strategy is a powerful tool for the rapid introduction and expansion of molecular diversity.¹ It is therefore desirable to utilize and develop this method for the synthesis of important heterocycles such as chiral spirooxindolopyrrolizidines and spirooxindoloprolines, for example, horsfiline,² elacomine³ and rhynchophylline, which exhibit significant biological activities⁴ (Fig. 1). Asymmetric multicomponent 1,3-dipolar cycloadditions of azomethine ylides with alkenes represent a useful strategy for stereoselective synthesis and the development of compounds having similar structures.⁵

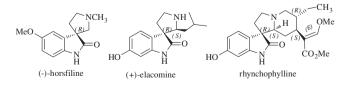
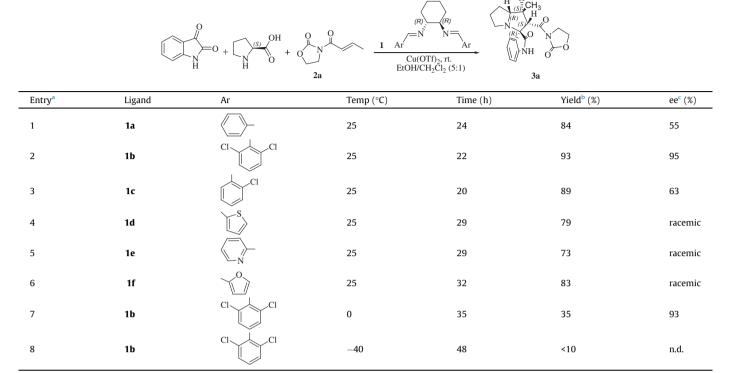


Figure 1. Spiropyrrolidine oxindole alkaloids.

* Corresponding author. Tel./fax: +98 021 22431661. *E-mail address:* k-jadidi@sbu.ac.ir (K. Jadidi).

We previously reported the synthesis of enantiomerically pure novel spirooxindolopyrrolizidines by applying an optically active cinnamoyl oxazolidinone as a chiral auxiliary and the obtained diastereoselectivities were very high.⁶ However, this protocol required the use of at least one equivalent of an enantiopure auxiliary which represents a major drawback. To resolve this problem, and in continuation of our previous work on the synthesis of spirooxindoles,⁷ herein, we have utilized a copper complex of cyclohexane-1.2-bis(arylmethyleneamine) **1** as a catalyst to synthesize a small library of this important class of spirooxindoles.⁸ We report a highly regio-, diastereo-, and enantioselective 1,3-dipolar cycloaddition reaction of azomethine ylides, derived from isatin, with an electron-deficient dipolarophile by using bidentate bis(imine)-Cu(II) complex 1, that can be readily assembled from commercially available trans 1,2-cyclohexanediamine and a variety of suitable aldehyde precursors,⁹ under optimized reaction conditions. Based on our previous experience and a literature survey,¹⁰ initially, the effects of substituents on the bis(imine) ligands 1 were examined using 10 mol % of Cu(OTf)₂ as the catalyst in the three-component reaction of isatin, (S)-proline, and dipolarophile 2a at room temperature. The results are summarized in Table 1.


The ligands **1b** and **1c** bearing the electron-withdrawing and relatively bulky Cl-containing substituents at the 2- and/or 6-positions of the benzene ring resulted in considerably higher yields and enantioselectivities in comparison with the other ligands.¹¹ The

^{0040-4039/\$ -} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.11.097

Table 1

Asymmetric synthesis of new chiral spirooxindolopyrrolidine 3a with chiral ligands 1a-f

^a The reaction of isatin (0.20 mmol), (S)-proline (0.21 mmol) with **2a** (0.20 mmol) was carried out in EtOH/CH₂Cl₂ (3 mL, 5:1) at rt in the presence of 10 mol % of the catalyst [Cu(OTf)₂-1 = 1.0:1.1].

^b Isolated yield.

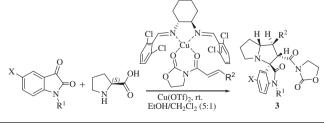
^c Determined by chiral HPLC analysis.

highest enantioselectivity (95%) and yield (93%) were achieved by employing ligand **1b**. The yields and enantiomeric ratios of the products showed the temperature dependence of this process. A decrease in the reaction temperature from 25 °C to -40 °C significantly decreased the yield and enantioselectivity (entries 2, 7 and 8). We next tested the effect of different Cu salts in this process using **1b** as the ligand (Table 2).

In all cases, $Cu(OTf)_2$ proved to be the best copper source, while other Cu salts led to a decrease in the ee, and longer reaction times (entries 2 and 3 vs 1). The use of $Zn(OTf)_2$ instead of $Cu(OTf)_2$ gave a poorer result in terms of the enantioselectivity (entry 4). The effects of catalyst loading were also investigated and the best results were obtained when 10 mol % of the catalyst was used. The ligandto-metal ratio of 1.1:1 using 20 mol % of ligand was investigated under similar conditions and the isolated yield and enantioselectivity remained the same at 96% and 90%, respectively. Lowering the catalyst loading to less than 10 mol % led to a decrease in the yield, reactivity and enantioselectivity. It should be noted that the addition of additives such as 3 or 4 Å molecular sieves did not give any noticeable changes in the results of the reaction, and even led to lower yields.

Table	2		
Effect	of the	Lewis	acid

Entry	Lewis acid (10 mol %)	Time (h)	Yield (%)	ee (%)
1	Cu(OTf) ₂	22	93	95
2	$Cu(OAc)_2$	23	92	66
3	CuCl ₂	28	76	racemic
4	$Zn(OTf)_2$	12	>99	racemic
5	$Cu(OTf)_2^a$	22	96	90


^a 20 mol % of catalyst was used.

Using the optimized reaction conditions, we next examined the scope and generality of this reaction with various types of azomethine ylides and two derivatives of 3-(2-alkenoyl)-1,3-oxaz-olidin-2-ones (**2**), and synthesized a small library of new chiral spirooxindolopyrrolizidines **3a**–**j** (Table 3).

The structures of the cycloadducts were assigned from their elemental and spectroscopic analyses including IR, ¹H NMR, ¹³C NMR, and mass spectral data.

Table 3

Asymmetric synthesis of new chiral spirooxindolopyrrolizidines 3a-j

Entry	х	\mathbb{R}^1	\mathbb{R}^2	Cycloadduct	Yield (%)	ee (%)
1	Н	Н	Me	3a	93	95
2	Н	Н	Ph	3b	95	93
3	Н	Me	Me	3c	93	89
4	Н	Et	Ph	3d	92	87
5	Н	Bn	Me	3e	92	91
6	Br	Н	Me	3f	99	89
7	Br	Me	Me	3g	92	87
8	Br	Et	Me	3h	94	90
9	Br	Me	Ph	3i	91	89
10	NO_2	Н	Me	3j	88	92

Download English Version:

https://daneshyari.com/en/article/5270693

Download Persian Version:

https://daneshyari.com/article/5270693

Daneshyari.com