Tetrahedron Letters 55 (2014) 1602-1607

Contents lists available at ScienceDirect

**Tetrahedron Letters** 

journal homepage: www.elsevier.com/locate/tetlet

## Unveiling the chemistry behind bromination of quercetin: the 'violet chromogen'

Mario C. Foti\*, Concetta Rocco

Istituto di Chimica Biomolecolare del CNR, via P. Gaifami 18, I-95126 Catania, Italy

## ARTICLE INFO

## ABSTRACT

Article history: Received 13 December 2013 Revised 15 January 2014 Accepted 20 January 2014 Available online 29 January 2014

Keywords: Quercetin Bromination Deprotonation Violet chromogen Quinones

Quercetin (1) is a polyphenol belonging to the class of 'flavonoids' which are widely distributed in the plant kingdom and consequently in our daily diet.<sup>1,2</sup> Quercetin has recognized biological properties<sup>3–5</sup> and—as most phenols<sup>6</sup>—is able to slow down the process of oxidation of organic matter<sup>7</sup> caused by dioxygen <sup>3</sup>O<sub>2</sub> (peroxidation). This beneficial antioxidant property is due to the ability that quercetin has to chelate transition-metal ions and to quench peroxyl radicals ROO<sup>.6,7</sup> The interest in the chemistry

and biology of quercetin is therefore notable, and in the last decades has shown no decline.  $^{\rm 8}$ 

© 2014 Elsevier Ltd. All rights reserved.

Bromination of quercetin with N-bromosuccinimide in neutral aqueous methanol occurs surprisingly in

the electron-deficient A-ring only. Deprotonation of the acidic 7-OH is a major driver of this regioselective

reaction. The increase of electron density makes in fact the quercetin anion suitable for an electrophilic

attack by bromine at positions 8 and 6. Several pieces of evidence (NMR spectra and H/D exchange) are

presented to substantiate the mechanism advanced. Bromoquinones/quinomethides produced in excess

of *N*-bromosuccinimide are responsible for the formation of a stable 'violet chromogen'.

The oxidation chemistry of quercetin has long been investigated.<sup>9–11</sup> The two-electron oxidation yields quinone/quinomethide compounds (Eq. (1)) that are intensely colored in purple ( $\lambda_{max} \sim 525$  nm, in 80% by volume methanol/water).<sup>9</sup> Density functional theory (DFT) calculations<sup>12</sup> show that the quinomethide Q<sub>1</sub> is more stable—and thus more abundant in solution—than the other three possible tautomers (Eq. (1)).



\* Corresponding author. Tel.: +39 095 733 8343; fax: +39 095 733 8310. *E-mail address:* mario.foti@cnr.it (M.C. Foti).







In protic solvents, the survival of the above quinone/quinomethide species (reaction 1) is however very limited. In fact, in 80% methanol/water (v/v) the half-life of  $Q_1$  is 2.5 s only.<sup>9</sup>  $Q_1$  can be regarded as a resonance-stabilized benzylic carbocation which readily undergoes a proton-assisted (Michael-type) nucleophilic addition of solvent (ROH) at position 2 (and 3) (Eq. (2)).<sup>13,14</sup> Discoloration of the solution follows this reaction as a consequence of the interruption of the conjugation between the rings B and A+C (Eq. (2)). At room temperature, the reaction in 80% methanol/water (v/v) is over, that is the purple color disappears, in a few tens of seconds.9

sodium, and ceftriaxone sodium) with a simple and accurate spectrophotometric test.<sup>16,17</sup>

The authors of these works attributed the violet color to the formation of guercetin guinones/guinomethides, in particular to Q<sub>1</sub>.<sup>15,16</sup> This hypothesis has been reconfirmed until recently<sup>16</sup> after about 20 years from the first observation. Our data, however, do not support this conclusion because Q<sub>1</sub> disappears very quickly in methanol/water mixtures (see above). What is (are) therefore the compound(s) responsible for this persistent and intense violet color? While answering this question we chanced upon a few derivatives of quercetin (bromoquercetins and



The aforementioned instability of Q<sub>1</sub> in protic solvents, however, seems to contrast with a report of 1992 in which the authors affirm that a methanolic solution of quercetin upon treatment with a neutral aqueous solution of N-bromosuccinimide (NBS) produced instantaneously an intense 'violet chromogen' ( $\lambda_{max} \sim 510 \text{ nm}$ ) which was stable for at least 15 min.<sup>15</sup> Later, the procedure was slightly modified and it was reported that the violet color persisted without decaying for more than one hour.<sup>16,17</sup> Interestingly, solutions of this oxidized guercetin reagent were used to titrate ascorbic acid and several antibiotics (cefoperazone sodium, cefazolin 2'-hydroxy-6,8-dibromoguercetin, see Scheme 1) worthy of being mentioned because we discovered they possess singular properties that will be reported in a forthcoming Letter. Although a few of these compounds are already known,<sup>18</sup> the syntheses we now report (see Supplementary data) are particularly simple and environmentally-friendly deserving therefore consideration.

First, we verified that upon treatment of a methanol solution of quercetin with aqueous NBS in a mole ratio of 1:4, respectively, the solution became immediately violet and the color persisted for



Scheme 1. Quercetin bromoderivatives obtained by treating a methanol solution of quercetin with aqueous NBS followed by reduction with Na2S2O4 at room temperature. The acetates were obtained by treating the reaction mixtures with acetic anhydride/pyridine.

Download English Version:

## https://daneshyari.com/en/article/5270714

Download Persian Version:

https://daneshyari.com/article/5270714

Daneshyari.com