Temperature induced rotation in a [4.4]cyclophane

Niculina D. Bogdan ${ }^{\text {a,b,*, Eric Condamine }}{ }^{\text {c }}$, Loïc Toupet ${ }^{\text {d }}$, Yvan Ramondenc ${ }^{\text {c }}$, Ioan Silaghi-Dumitrescu ${ }^{\text {b }}$, Ion Grosu ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Marie Curie Excellence Team, Dept. Chemie, LS AC Technische Universität München 4, Lichtenbergstrasse, 85747 Garching, Germany
${ }^{\mathrm{b}}$ Faculty of Chemistry and Chemical Engineering, 'Babes-Bolyai' University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
${ }^{\text {c }}$ IRCOF, UMR 6014, Faculté des Sciences, Université de Rouen, 76821 Mont Saint-Aignan, Cedex, France
${ }^{\text {d }}$ Université de Rennes I, UMR 6251, 35042 Rennes, Cedex, France

A R T I C L E I N F O

Article history

Received 14 April 2008
Revised 3 June 2008
Accepted 9 June 2008
Available online 14 June 2008

Keywords

Molecular devices
[4.4]Cyclophanes
Dynamic NMR investigations
X-ray structure
Molecular modeling

Abstract

The synthesis, the X-ray, NMR and molecular modeling structure determination of a new orthopara[4.4]cyclophane are reported. The similarity of the $\pi(\mathrm{CO})-\pi(\mathrm{Ar})$ driven conformational equilibrium of this compound to the work of an amusement ride machinery is also revealed.

© 2008 Elsevier Ltd. All rights reserved.

Although their importance beyond chemical curiosities is yet to be demonstrated, the design (at molecular or supramolecular level) of architectures and machineries that can reproduce the work of motors, ${ }^{1,2}$ muscles, ${ }^{3-6}$ or (home) devices ${ }^{7,8}$ is a well-represented field of chemical research. ${ }^{9-16}$ Recent papers reveal the building of molecular shuttles, ${ }^{17-20}$ giant gyroscope, ${ }^{21-25}$ hinges, ${ }^{26}$ tweezers, ${ }^{27}$ and scissors. ${ }^{28,29}$ In a previous work, ${ }^{30,31}$ we obtained [7.7]cyclophane-based molecular rudders, wringer and rocking chair. Herein, we describe and investigate the unusual conformational behavior of more hindered [4.4]cyclophanes that could be used for building new molecular devices.

Orthopara[4.4]cyclophane $\mathbf{2}$ was obtained in fair yields starting from 1,3-dioxane diol $\mathbf{1}$ and phthaloyldichloride (Scheme 1).

The solid state molecular structure of $\mathbf{2}$ (Fig. 1) reveals as its most salient feature the proximity of the 1,4 -phenylene ring to one of the CO groups ($\mathrm{C}^{2} \mathrm{O}^{4}$ in Fig. 1) and indicates $\pi-\pi$ interactions between these units.

According to the literature data, ${ }^{32}$ the short distance from O^{4} to the center of ring A ($3.12 \AA$) and the slightly tilted orientation of the planes of the ester group $\left(\mathrm{O}^{3} \mathrm{C}^{2} \mathrm{O}^{4}\right)$ and the opposite aromatic ring A (the dihedral angle between the two planes is $\omega=28.53^{\circ}$) suggest the important overall stabilization of the structure by the

[^0]

Scheme 1. Synthesis of cyclophane 2.

CO-aromatic interactions. These $\pi-\pi$ interactions are brought about by the anti-anti conformation of one of the chains $-\mathrm{C}^{14}$ -$\mathrm{C}^{13}(\mathrm{O})-\mathrm{O}^{12}-\mathrm{C}^{11} \mathrm{H}_{2}-\mathrm{C}^{10}$ - [torsion angles for the bonds $-\mathrm{C}^{13}(\mathrm{O})-$ $\mathrm{O}^{12}-$ and $-\mathrm{O}^{12}-\mathrm{C}^{11} \mathrm{H}_{2}$ - are -176.63 and 167.46], the twisting of the other bridge to the anti-anticlinal conformation [the torsion angles for the bonds $-\mathrm{C}^{2}(\mathrm{O})-\mathrm{O}^{3}$ - and $-\mathrm{O}^{3}-\mathrm{C}^{4} \mathrm{H}_{2}$ - of the similar -$\mathrm{C}^{1}-\mathrm{C}^{2}(\mathrm{O})-\mathrm{O}^{3}-\mathrm{C}^{4} \mathrm{H}_{2}-\mathrm{C}^{5}-$ moiety are -173.82 and -101.17], the deformation of the para-phenylene ring (the angle between the bonds $\mathrm{C}^{5}-\mathrm{C}^{6}$ and $\mathrm{C}^{9}-\mathrm{C}^{10}$ is 31.86°) and the face-tilted-to-face arrangement of rings A and $\mathrm{B}\left(\alpha_{\mathrm{A} / \mathrm{B}}=36.35^{\circ}\right)$. Additionally, $\mathrm{C}-\mathrm{H}-\pi$ and $\pi-\pi$ interactions of rings A and B are found in the lattice (shown in SI).

To investigate the molecular motions characteristic to this cyclophane, we took into account several conformational equilibria (Scheme 2). The dioxacyclohexane parts of the cyclophane are anancomeric (rigid) with axial disposition of the para-phenylene

Figure 1. ORTEP diagram of compound 2.

anticlinal-anti

$$
\text { I }\left(\omega_{1}=120^{\circ} ; \omega_{2}=180^{\circ}\right) \quad \text { II }\left(\omega_{1}=240^{\circ} ; \omega_{2}=180^{\circ}\right)
$$

(2)

anticlinal-anti
(1) $\|^{1}$

anti-anticlinal

Scheme 2. Flipping of the bridges and outside-inside movement of the CO groups in [4.4]cyclophane 2.
ring for both dioxacyclohexane units. The ester parts of the cyclophane (the bridges) are flexible and, therefore, allow the molecular motions of interest to take place. The conformational behavior of the bridges is complex and involves both the common (for [4.4]cyclophanes) ${ }^{33}$ flipping of the ortho-phenylene ring (Scheme 2; equilibrium 2) and the outside-inside movement of the CO groups (Scheme 2, equilibrium 1, I $\leftrightarrows \mathrm{III}$; I $\leftrightarrows \mathrm{IV}$). This last conformational process requests the interchange of the anti-anti and anti-anticlinal conformations of the $\mathrm{C}(\mathrm{ar})-\mathrm{CO}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}(-\mathrm{O}-$ $\left.\mathrm{CH}_{2}-\right)_{2}-$ parts of the bridges. This conformational change amounts
to $+60^{\circ}$ torsion around the $0^{3}-\mathrm{C}^{4} \mathrm{H}_{2}\left(\omega_{1}\right)$ bond and -60° torsion around the $\mathrm{O}^{12}-\mathrm{C}^{11} \mathrm{H}_{2}\left(\omega_{2}\right)$ bond. The flipping of the bridges requests the modification of the anticlinal conformer (I) to its enantiomeric structure (II) [rotation of $+120^{\circ}$ or -120° around $\mathrm{O}^{3}-$ $\mathrm{C}^{4} \mathrm{H}_{2}\left(\omega_{1}\right)$ for $\mathrm{I} \leftrightarrows \mathrm{II}$ and around $\mathrm{O}^{12}-\mathrm{C}^{11} \mathrm{H}_{2}\left(\omega_{2}\right)$ for $\left.\mathrm{III} \leftrightarrows \mathrm{IV}\right]$. We calculated the energies associated to these conformational changes (SI). The inside-outside movement of the CO groups (equilibrium denoted with 1 in Scheme 2) was found to have a small barrier (the value found by molecular modeling is $\Delta G^{\text {®\# }}=6.6 \mathrm{kcal} / \mathrm{mol}$), while for the flipping of the bridges (denoted with 2) the calculated barrier is considerably higher ($\Delta G^{\text {®\# }}=23.4 \mathrm{kcal} / \mathrm{mol}$).

These movements that push and pull at the same time in front and behind and shake the ortho-substituted phenylene ring can be compared with the work of a 'molecular amusement ride' (the support of the machine is represented by the para-phenylene moiety, the chair is the ortho-phenylene ring and the mechanism is formed by the $-\mathrm{CO}-\mathrm{O}-\mathrm{CH}_{2}-$ parts of the bridges, Fig. 2).

In order to experimentally observe the conformational changes in cyclophane 2, variable temperature ${ }^{1} \mathrm{H}$ and ${ }^{1} \mathrm{C}$ NMR experiments were carried out (Figs. 3 and 4 and SI). The temperatures were increased or decreased and ${ }^{1} \mathrm{H}$ NMR spectra were recorded after each $10^{\circ} \mathrm{C}$ temperature modification. We also compared the conformational behavior of molecule 2 in CDCl_{3} (non competing

Figure 2. Macroscopic representation of the amusement ride machine.

Figure 3. Variable temperature NMR experiments $\left(\mathrm{CDCl}_{3}\right)$ run with compound $\mathbf{2}$ (a: 330 K; b: 290 K; c: 220 K).

https://daneshyari.com/en/article/5280772

Download Persian Version:
https://daneshyari.com/article/5280772

Daneshyari.com

[^0]: * Corresponding authors. Tel./fax: +49 8928913206 (N.D.B.); fax: +40 (0) 264 590818 (I.G.).

 E-mail addresses: niculina.bogdan@ch.tum.de (N. D. Bogdan), igrosu@chem. ubbcluj.ro (I. Grosu).

