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a b s t r a c t

This paper addresses the problem of combining multi-modal kernels in situations in which object
correspondence information is unavailable between modalities, for instance, where missing feature val-
ues exist, or when using proprietary databases in multi-modal biometrics. The method thus seeks to
recover inter-modality kernel information so as to enable classifiers to be built within a composite
embedding space. This is achieved through a principled group-wise identification of objects within dif-
fering modal kernel matrices in order to form a composite kernel matrix that retains the full freedom
of linear kernel combination existing in multiple kernel learning. The underlying principle is derived from
the notion of tomographic reconstruction, which has been applied successfully in conventional pattern
recognition.

In setting out this method, we aim to improve upon object-correspondence insensitive methods, such
as kernel matrix combination via the Cartesian product of object sets to which the method defaults in the
case of no discovered pairwise object identifications. We benchmark the method against the augmented
kernel method, an order-insensitive approach derived from the direct sum of constituent kernel matrices,
and also against straightforward additive kernel combination where the correspondence information is
given a priori. We find that the proposed method gives rise to substantial performance improvements.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The problem of multiple kernel learning (MKL) was identified
by Lanckriet et al. [1] and is now well established within the litera-
ture [2–11]. It builds on the widespread adoption of kernel-based
methods within machine learning for a variety of tasks, in particu-
lar regression and classification [12,13]. The latter category
includes state-of-the-art methods such as support vector machines
(SVMs) [14,12] and kernel Fisher discriminant analysis (kernel
FDA) [15,16].

Kernel methods have in common that they map observations
into an inner product space, provided that they fulfil the Mercer
conditions. A wide choice of kernels is typically available for any
given learning problem; each of these kernels can be seen as cap-
turing a different aspect of the data. In classification problems,
arbitrarily morphologically-complex (i.e., non-linear) decision
boundaries may be obtained within a linear input space via the

choice of kernel. Early work on learning the kernel includes [17],
where kernel parameters are optimized by minimizing estimates
of the generalization error of SVMs, and [18], where the complexity
of learning the kernel matrix for SVM classification is analyzed.

Multiple kernel learning seeks to learn an appropriate linear
combination of such base kernels, linear combination being chosen
because this crucially retains the Mercer properties. Lanckriet et al.’s
formulation [1] utilizes linear combination of M m�m training ker-
nel matrices Kk; k ¼ 1; . . . ;M and m class labels yi 2 f1;�1g;
i ¼ 1; . . . ;m, with m the number of training samples, this being
equivalent to forming the Cartesian product of the associated fea-
ture spaces. The goal of MKL is then to optimize the ‘scaling factors’
of the feature spaces with respect to the classification. Other MKL
formulations address tractability issues when m is large. These
include, e.g., the semi-infinite linear programming (SILP) formula-
tion of [3], and the reduced gradient descent algorithm of [6]. The
‘1 regularization in [1] can also be generalized to an ‘p (p > 1) norm
[19] to avoid solution sparsity if required. Other variants of MKL
approaches include, to name a few, hyperkernels [20], information
theoretic MKL [21], multiple kernel FDA [22,23], multiclass MKL
[4], multilabel MKL [24] and nonlinear MKL [25].

A key distinction that may be made between multiple kernel
methods is whether they implicitly require object correspondence
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information; additive kernel combination such as the method of
Lanckriet et al. assumes that this information is present. Thus,
the ordering of the objects defining the Kk is assumed to be the
same across all modalities. However, methods do exist that are
not dependent on this correspondence, the principle such method
being augmented kernel combination [26]. In augmented kernel
combination, the direct sum of kernel matrices is formed, resulting
in a block-diagonal kernel matrix (i.e. so that all of the constituent
kernel matrices are embedded along the diagonal of the resultant
matrix, with all inter-kernel values set to a value of zero); [26]
compares the geometric interpretation of linear combination and
augmented kernel combination. It is shown in [27] that augmented
kernel combination is closely related to classifier fusion.

In general, the problem domain will determine whether object
correspondence information is available. For instance, it is not
uncommon in multi-modal biometrics to obtain distinct sets of
exemplar subjects for each individual biometric measurement
(e.g., iris scans, finger prints, photographic images), particularly
when employing separate commercial sources [28]. In this case,
we would wish to utilize the information collectively contained
within each data set for a given test subject, but would lack object
correspondences in the collective set of multi-modal data sets. In
other words, we have object correspondence in the test set but
not the training set. The augmented kernel approach to classifica-
tion of individual test subjects in this case would be to build a com-
posite kernel matrix via the direct sum of kernel matrices
associated with each modality and then utilize this, in combination
with a corresponding vector of class labels, for classifier training.
(The direct sum kernel matrix is order-insensitive with regard to
the training objects within individual modalities provided that
the class label vector is correspondingly permuted.)

However, the argument of this paper is that such methods, by
omitting the possibility of re-deriving correspondence information,
potentially overlook important classification information. To
address this, we propose a kernel-based adaptation of a method
developed for standard non-kernelized pattern recognition that is
capable of bringing about this correspondence.2 The resulting
method for multiple kernel learning gives rise to a kernel matrix that
defines an appropriate composite embedding space that, as nearly as
possible, approximates the kernel matrix that would exist if all
object correspondence information were available. It does so by
removing the biasing factors associated with linear methods of ker-
nel combination.

1.1. Linear combination bias in non-kernelized pattern recognition

In conventional (i.e., non-kernelized) pattern recognition, it may
be demonstrated [29,30] that linear classifier combination meth-
ods impose a bias on the composite decision space formed by deci-
sion combination3 (by ‘‘decision space’’ we here mean the space in
which the decision boundary is formed). This bias comes about via
the limitations of linear combination in dealing with correlated
information in the marginal classifiers (i.e. the feature-selected clas-
sifiers constituting the combination), and prevents the optimal deci-
sion boundary being constructed, leading to suboptimal overall
performance. We thus consider the classifiers within a combination
as representing, to some degree of approximation, the marginal dis-
tributions of the composite pattern space in which the decision
boundary is formed (see Section 2.1 for a pictorial example of this

process; in the remainder of the Introduction we give a qualitative
account).

This biasing behavior occurs, for instance, when feature selec-
tion is applied to an input space of arbitrary dimensionality, S, such
that a set of classifiers (indexed by i 2 I) become associated with
non-coincident (i.e., non-overlapping) feature sets that collectively
span S (or a subset of it). In such cases, classifier combination effec-
tively acts to combine, in the original input space, the set of
orthogonal marginals distributions that are implicitly modeled
within the individual classifiers, i (modeling need not be exact,
e.g. in the case of discriminative classifiers; see Section 2.1 for an
example with artificial neural networks).

A similar situation exists in multi-modal fusion problems,
where modalities may equally be regarded as the features of some
composite decision space, allocated to specific classifiers asso-
ciated with the modalities. It was the effort of [29] to demonstrate
that this bias is specifically a form of sampling bias. The bias attri-
butable to linear combination methods within the composite space
is thus due to the mismatch of the very low number of angular
samples of the composite decision space (equivalent in magnitude
to jIj) created by the orthogonal ‘marginal’ distributions of the fea-
ture-selection process in comparison to their linear sampling rate.
(The linear sampling rate equates to the total number of distin-
guishable input vectors.)4 However, to fully represent arbitrary dis-
tributions in the composite space, angular and linear sampling
would have to be of the same order (the orthogonal nature of this
angular sampling is depicted in Section 2.1).

This mismatch between angular and linear sampling of the
composite decision space suggests an analogy with tomography
theory, for which the component classifiers of the combination
essentially represent Radon-projections (linear integrals) of the
composite decision space. Linear combination then acts as the
inverse operation to Radon-projection, i.e., back projection (essen-
tially a summation over the Radon Projections that intersect at
the point of reconstruction). However, in tomography theory
back-projection only recovers a biased simulacra of the original
unprojected composite space (the outcome of back-projection
being the original distribution in the space convolved with an arte-
fact defined by the angular frequency of the Radon sampling). The
process of tomography is thus concerned with the pre- or post-
combination filtration of this artefact in order to remove the sam-
pling bias.

Similarly, this bias is represented within tomographic classifier
combination theory as a convolution of the true underlying dis-
tribution of pattern vectors (denoted Ftrue) in the decision space
with an artefact (denoted Fsamp) deriving from the sampling (Ftrue

and Fsamp are thus density distributions defined over the entirety
of S). The ‘recovered’ density distribution induced by classifier
combination is thus Fcomb ¼ Ftrue H Fsamp, with H the convolution
operation. Fsamp is thus defined in the composite space by the
response of an origin-centered Dirac delta function, firstly to repre-
sentation as a series of individual Dirac delta functions in the mar-
ginal spaces associated with each classifier, and secondly to the
action of the combination rule that reconstructs an ‘image’, Fcomb,
of the original Dirac delta function within the composite space.
That is, Fsamp is what is obtained if one were to take a single pattern
vector from the true underlying distribution of pattern vectors in
the decision space, represent it within the individual classifiers
via feature-selection, and then ‘re-project’ it back onto in the deci-
sion space by applying the combination rule. The resulting entity
formalizes the systematic convolutional ‘bias’ introduced by the

2 Thus, our method is an MKL method to the extent that it proposes a linear sum of
kernels to be optimized. However, the method of generating these kernels is by no
means linear.

3 This applies in situations in which it can be reasonably assumed that there exists
no a priori restriction on density distributions in the decision space, for instance, prior
knowledge of feature independence.

4 Note this only represents combination bias; classifier bias also contributes. cf. [30]
for a fuller discussion of the bias/variance breakdown under this paradigm. See also
[31–33] for a general discussion of bias–variance–covariance decomposition in
classifier ensembles.
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