
Information Fusion 34 (2017) 49–54 

Contents lists available at ScienceDirect 

Information Fusion 

journal homepage: www.elsevier.com/locate/inffus 

Super- and subadditive constructions of aggregation functions 

Alexandra Šipošová a , ∗, Ladislav Šipeky 

a , Fabio Rindone 

b , Salvatore Greco c , d , 
Radko Mesiar a , e 

a Department of Mathematics and Descriptive geometry, Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, 810 05 Bratislava, 

Slovakia 
b Department of Economics and Business, University of Catania, 95029 Catania, Italy 
c Department of Economics and Business, University of Catania, Corso, Italia, 55, 95129 Catania, Italy 
d University of Portsmouth, Portsmouth Business School, Centre of Operations Research and Logistics (CORL), Richmond Building, Portland Street, Portsmouth 

PO1 3DE, United Kingdom 

e University of Ostrava, IRAFM, 30.dubna 22, Ostrava, Czech Republic 

a r t i c l e i n f o 

Article history: 

Received 15 January 2016 

Revised 16 May 2016 

Accepted 25 June 2016 

Available online 27 June 2016 

Keywords: 

Aggregation function 

Subadditive transformation 

Superadditive transformation 

Decomposition integral 

a b s t r a c t 

Two construction methods for aggregation functions based on a restricted a priori known decomposition 

set and decomposition weighing function are introduced and studied. The outgoing aggregation functions 

are either superadditive or subadditive. Several examples, including illustrative figures, show the poten- 

tial of the introduced construction methods. Our approach generalizes several known constructions and 

optimization methods, including decomposition and superdecomposition integrals. We present also an 

economic applications of the introduced concepts. 
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1. Introduction 

Aggregation functions play an important role in many domains 

where an n-dimensional input representation is represented by 

a single value. For more information and details we recommend 

monographs [1,5] . Recall that for n ∈ N a monotone function A : 

[0, 1] n → [0, 1] is called an aggregation function whenever 

it satisfies two boundary conditions A (0 , ..., 0) = A ( 0 ) = 0 and 

A (1 , ..., 1) = A (1 ) = 1 . Observe that we will not consider the 

usual convention A (x ) = x for 1-dimensional aggregation func- 

tions. Note also that, in general, some other interval I can be 

considered instead of the unit interval [0, 1]. However, our re- 

sults related to [0, 1] domain can be easily generalized to the 

domain I . 

In several practical situations, the aggregation function A is 

not known on its full domain [0, 1] n , but only on a subdomain 

H ⊆ [0 , 1] n . More often the boundary condition A (1 ) = 1 is not im- 

portant, i.e., A and λA gives the same information for the user, 

independently of λ ∈ ]0, ∞ [. This is, e.g., the case when A is 

considered as a utility function. The above facts have inspired us 
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to introduce two construction methods for aggregation functions 

when only a partial information is known. Our approach was mo- 

tivated by the ideas from [6,7] dealing with superadditive and sub- 

additive transformations of aggregation functions on [0, ∞ [. Re- 

call that a function F : [0, ∞ [ n → [0, ∞ [ is called superadditive 

(subadditive) whenever, for any x, y ∈ [0, ∞ [ n , it holds F (x + y ) ≥
F (x ) + F (y ) (F (x + y ) ≤ F (x ) + F (y )) . F is additive if and only if it 

is both superadditive and subadditive, i.e., F (x + y ) = F (x ) + F (y ) . 

If F is defined on some subdomain I n ∈ [0, ∞ [ n ; then the above 

inequalities (equalities) are considered for x, y ∈ I n such that also 

x + y ∈ I n . 

Our contribution is organized as follows. In Section 2 , based 

on a decomposition set H and weighing function B , we introduce 

superadditive and subadditive functions B ∗ and B ∗, and the re- 

lated aggregation functions A 

H,B and A H,B , including two motivat- 

ing examples and some preliminary results. In Section 3 , we ex- 

emplify the functions B ∗ and B ∗ for several decomposition pairs 

(H, B ) and show the link of our constructions to decomposition 

and superdecomposition integrals [9,10] . In Section 4 we present 

an economic application showing how the introduced concepts 

permits to define and measure the utilization rate of the pro- 

duction capacity of a firm. Finally, some concluding remarks are 

added. 
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2. Super- and subadditive constructions of aggregation 

functions 

Fix n ∈ N = { 1 , 2 , . . . } . In what follows, an arbitrary subset H of 

[0, 1] n such that 0 ∈ H will be called a decomposition set . A func- 

tion B : H → [0 , 1] , not identically equal to zero, with B (0 ) = 0 and 

such that B ( x ) ≤ B ( y ) whenever x ≤ y for x , y ∈ H, will be called a 

decomposition weighing function . For any subset S ⊆[0, ∞ [ of non- 

negative real values, we will denote by inf S the greatest lower 

bound of S , and by sup S the smallest upper bound. If S is un- 

bounded then sup S = ∞ by convention. Moreover, the convention 

that inf ∅ = ∞ and sup ∅ = 0 will be also considered. 

Although a decomposition weighing function is defined only on 

H which, in the extreme case, may consist besides 0 just of a sin- 

gle point, one may introduce its transformation to the entire unit 

n -cube [0, 1] n by letting 

B ∗(x ) = inf 

{ 

k ∑ 

i =1 

B (y (i ) ) | k ∈ N, (y (i ) ) k i =1 ∈ H 

k ;
k ∑ 

i =1 

y (i ) ≥ x 

} 

(1) 

and B 

∗(x ) = sup 

{ 

k ∑ 

i =1 

B (y (i ) ) | k ∈ N, (y (i ) ) k i =1 ∈ H 

k ;
k ∑ 

i =1 

y (i ) ≤x 

} 

. 

(2) 

Observe that, in general, B ∗ and B ∗ are mappings from [0, 1] n → 

[0, ∞ ]. The pair (H, B ) will be called subadmissible if B ∗(1) ∈ ]0, 

∞ [, and superadmissible if B ∗(1) ∈ ]0, ∞ [. The set of all subadmis- 

sible and superadmissible pairs will be denoted simply by Sub n and 

Super n , respectively. 

For any subadmissible (superadmissible) pair (H, B ) we may in- 

troduce normalized versions of the transformation of B introduced 

above by letting 

A H,B : [0 , 1] n → [0 , 1] ; x 
→ B ∗(x ) /B ∗(1 ) (3) 

and 

A 

H,B : [0 , 1] n → [0 , 1] ; x 
→ B 

∗(x ) /B 

∗(1 ) , (4) 

where in both cases 1 ∈ [0, 1] n denotes the all-one vector. 

Let us give two economic examples of possible applications of 

normalized subadmissible and superadmissible normalized trans- 

formations A H,B and A 

H,B . 

Example 1. Let us suppose that function B is a production function 

(see e.g., [4,11] ) related to a given product so that from the vec- 

tor of input quantities x = [ x 1 , . . . , x n ] ∈ � 

n + the quantity B ( x ) ∈ � 

is obtained. More precisely, one can imagine that there is a set of 

admissible input vectors H ⊆ � 

n + , so that, in fact, one can imagine 

the production function as mapping from H to � + . One can also 

suppose that the input quantities are normalized so that x ∈ [0 , 1] n 

and, consequently, H ⊆ [0 , 1] n . Also the output can be normalized 

in the interval [0, 1]. Considering that it could be possible to get 

a greater output by splitting the production related to a vector of 

input x = [ x 1 , . . . , x n ] ∈ [0 , 1] in the family of vector of inputs y (i ) ∈ 

H 

k , i = 1 , . . . , k with 

∑ k 
i =1 y 

(i ) ≤ x obtaining as output 
∑ k 

i =1 B (y (i ) ) , 

by means of the superadditive transformation we get that the max- 

imal output is given by B ∗( 1 ). Therefore, the normalized production 

function related to basic production function B and to the set of 

admissible input vectors H is given by A 

H,B = B ∗(x ) /B ∗(1 ) . 

Example 2. Let us consider a financial market (see e.g., [3] ) where 

uncertainty is represented by a set of states S = { s 1 , . . . , s n } . States 

from S are exhaustive and mutually exclusive so that only one state 

will be true. In this context each vector x = [ x 1 , . . . , x n ] ∈ � 

n + can 

be considered as a feasible security that pays an outcome x i , i = 

1 , . . . , n, if the state s i is revealed true. Suppose that on the market 

a set of securities H ⊂ � 

n + is available. In this context B : H → � + 
is a price function. Fix a vector of outcomes x = [ x 1 , . . . , x n ] ∈ � 

n + . 
A super-replication portfolio ( [2] ) is a set of securities y (i ) ∈ H, i = 

1 , . . . , k, such that 
∑ k 

i =1 y 
(i ) ≥ x . Among all the super-replication 

portfolios, one economic operators look for that one with the min- 

imum price which is given by B ∗( x ). One can suppose that all out- 

comes of considered securities can be normalized so that they take 

value in [0, 1], and one has B : [0, 1] n → [0, 1]. Also the prices 

can be normalized in the interval [0, 1]. In fact, in this context the 

maximal attainable vector of outcomes is 1 having B ∗( 1 ) as mini- 

mal price of the super replication portfolio. Therefore the prices of 

portfolio x ∈ [0, 1] n in the considered financial market is given by 

A H,B = B ∗(x ) /B ∗(1 ) . 

Quite expectedly, the introduced functions B ∗ and B ∗ as well as 

their normalized versions A H,B and A 

H,B , are subadditive and su- 

peradditive, respectively: 

Proposition 1. If (H, B ) is a subadmissible pair, then A H,B is a subad- 

ditive aggregation function. Analogously, if (H, B ) is a superadmissible 

pair, then A 

H,B is a superadditive aggregation function. 

Proof. Because of subadmissibility and superadmissibility assump- 

tions, the functions A H,B and A 

H,B are well defined. Monotonic- 

ity of both A H,B and A 

H,B follow from the monotonicity and non- 

negativity of decomposition weighing functions. Clearly, A H,B (0 ) = 

0 (A 

H,B (0 ) = 0 ) and A H,B (1 ) = 1 (A 

H,B (1 ) = 1 ) . It remains to prove 

sub- and superadditivity, and it is clearly sufficient to do this for B ∗
and B ∗. The proof that B ∗ and B ∗ are subadditive and superadditive 

is given in Propositions 3 and 2 , respectively, of [7] . 

For arbitrary x, y ∈ [0, 1] n let ( ̄x (i ) ) k 
i =1 

and ( ̄y ( j) ) � 
j=1 

be a k - 

tuple and an � -tuple of vectors in H for which 

∑ k 
i =1 ̄x 

(i ) ≥ x and ∑ � 
j=1 ̄y 

( j) ≥ y . Since, by the choice of these k - and � -tuples, the 

sum of the vectors in the (k + � ) -tuple ( ̄x (1) , . . . , ̄x (k ) , ̄y (1) , . . . , ̄y (� ) ) 

is at least x + y , it follows by the definition of B ∗ that 

B ∗(x + y ) ≤
k ∑ 

i =1 

B ( ̄x 

(i ) ) + 

� ∑ 

j=1 

B ( ̄y ( j) ) . 

Now, it is evident that B ∗(x + y ) ≤ B ∗(x ) + B ∗(y ) . 

Similarly, for any x, y ∈ [0, 1] n let ( ̄x (i ) ) k 
i =1 

and ( ̄y ( j) ) � 
j=1 

be a 

k -tuple and an � -tuple of vectors in H for which 

∑ k 
i =1 ̄x 

(i ) ≤ x and ∑ � 
j=1 ̄y 

( j) ≤ y . By the choice of these k - and � -tuples, the sum of 

the vectors in the (k + � ) -tuple ( ̄x (1) , . . . , ̄x (k ) , ̄y (1) , . . . , ̄y (� ) ) is this 

time at most x + y , and so from the definition of B ∗ we have 

B 

∗(x + y ) ≥
k ∑ 

i =1 

B ( ̄x 

(i ) ) + 

� ∑ 

j=1 

B ( ̄y ( j) ) . 

Again, it is evident that B ∗(x + y ) ≥ B ∗(x ) + B ∗(y ) . This implies sub- 

and superadditivity of B ∗ and B ∗ and completes the proof. �

We illustrate our proposals in the next simple example. Let 

n = 1 and consider a trivial decomposition system H = { 0 , 1 /t} for 

some fixed positive integer t . Further, let B be a decomposition 

weighing function defined by B (0) = 0 and B (1 /t) = b > 0 . Obvi- 

ously, B ∗(0) = 0 . For any x ∈ ]0, 1], letting k =  tx � (the ceiling 

of tx ) we have x ∈ ](k − 1) /t , k/t ] , so that B ∗(x ) = kb and hence 

B ∗(1) = tb; it follows that A H,B (x ) = B ∗(x ) /B ∗(1) =  t x � /t , which is 

a subadditive aggregation function. By the same token, letting � = 

� tx � (the floor of tx ) we have x ∈ [ �/t, (� + 1) /t[ , so that B ∗(x ) = �b, 

B ∗(1) = tb, and A 

H,B (x ) = B ∗(x ) /B ∗(1) = � t x � /t , which is a super- 

additive aggregation function. 

Proposition 2. If (H, B ) is a subadmissible pair, then A H,B = B if and 

only if H = [0 , 1] n and B is subadditive, with B (1 ) = 1 . Analogously, 

if (H, B ) is a superadmissible pair, then A 

H,B = B if and only if H = 

[0 , 1] n and B is superadditive, with B (1 ) = 1 . 
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