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a b s t r a c t 

This paper presents a box-particle implementation of the standard probability hypothesis density (PHD) 

filter for extended target tracking, called the extended target box-particle PHD (ET-Box-PHD) filter. The 

proposed filter can dynamically track multiple extended targets and estimate the unknown number of 

extended targets, in the presence of clutter measurements, false alarms and missed detections, where the 

extended targets are described as a Poisson model developed by Gilholm et al. To get the PHD recursion 

of the ET-Box-PHD filter, a suitable cell likelihood function for one given reliable partition is derived, and 

the main filter steps are presented along with the necessary box manipulations and approximations. The 

capabilities and limitations of the proposed ET-Box-PHD filter are illustrated both in linear simulation 

examples and in nonlinear ones. The simulation results show that the proposed ET-Box-PHD filter can 

effectively avoid the high number of particles and obviously reduce computational burden, compared to 

a particle implementation of the standard PHD filter for extended target tracking. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Early classical target tracking can be characterized as the pro- 

cessing of a time-sampling sequence of measurements collected 

from a target for the sake of maintaining an estimate of the tar- 

get’s current state, see, e.g., [1–3] . In this context, the target is de- 

fined as a point target which is assumed to generate at most one 

measurement at a given time step. However, with increased res- 

olution of modern and more accurate sensors (e.g., phased array 

radar), the target may occupy the sensor’s multiple resolution cells, 

thus potentially generating a strongly fluctuating number of mea- 

surements at a given time step. In this case, this target is prefer- 

ably defined as an extended target [4] , which provides not only the 

target’s kinematic information but also the target-extension infor- 

mation as the size, shape and orientation of the target. Extended 

target tracking is valuable for many actual applications including 

ground-based radar stations tracking airplanes in the near field of 

the radar, vehicles tracking other road-users using radar sensors, 

and mobile robotics tracking pedestrians using laser range sensors. 

Additionally, closely related to extended target is group target, de- 

fined as a group of closely-spaced point targets which cannot be 

tracked individually and can only be treated as a single object [5] . 

Unlike the point target, each extended target can generate mul- 

tiple measurements at a given time step, thus a model of the 
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measurements’ number for each target is needed. Gilholm and 

Salmond in [6] for extended target tracking developed an approach 

under the assumption that the number of the measurements gen- 

erated by each extended target at a given time step is Poisson 

distributed. A measurement model was presented in [7] , which is 

characterized as an inhomogeneous Poisson point process. In this 

model, a Poisson distributed random number of measurements at 

each time step are produced and distributed around the extended 

target. This measurement model implies that the extended target 

is sufficiently far from the sensor so that the measurements gener- 

ated by it resemble a cluster rather than a geometric structure. 

Multiple measurements generated by each extended target may 

raise the possibility of estimating its extension. For this purpose, 

several approaches for the extended target tracking have been 

proposed. The random matrix model for extended target and 

group target tracking was introduced by Koch in 2008 [8] , which 

decomposes the extended target state at each time step into a 

kinematical state and an extension. The kinematical state and the 

target extension are modeled as Gaussian distributed and inverse 

Wishart distributed, respectively. Modifications and developments 

to the random matrix model [8] have been found in [9–11] . 

Another model for extended target is the random hypersurface 

model (RHM) [12] , which is a specific measurement source model 

under the assumption that each measurement source lies on a 

scaled version of the true ellipse describing the extended target. 

The elliptic RHMs’ development for extended target tracking is 

inspired by the idea estimating the smallest enclosing ellipse of 
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the extended target [13] . The other approaches to estimating the 

target extensions, as rectangles, ellipses, non- ellipses, or more 

general shapes, are given in [14–18] . 

With finite set statistics (FISST), Mahler developed a set the- 

oretic approach in which both states and measurements of tar- 

gets are modeled using random finite sets (RFS). This approach 

allows the problem of dynamically estimating multiple targets in 

the presence of clutter and with uncertain association to be cast 

in a Bayesian filtering framework [ 19 , 20 ], which in turn results in 

a theoretically optimal multi-target Bayesian filter. However, the 

novel RFS-based approach, introduced by Mahler [19] , is usually 

intractable in most practical applications [ 21 , 22 ] except for simple 

examples. To alleviate this intractability, for the point target track- 

ing [23–25] , Mahler proposed the standard probability hypothesis 

density (PHD) [21] by FISST. The standard PHD filter in time prop- 

agates the posterior intensity of the targets’ RFS as a first moment 

approximation of the multi-target Bayesian filter. Compared to the 

traditional association-based approaches, the standard PHD filter 

has the distinct advantage that it operates only on the single-target 

state space and avoids data association [26] . The practical Gaus- 

sian mixture (GM) and sequence Monte Carlo (SMC) implementa- 

tions of the PHD filter were given in [27] and [22] , respectively. 

Recently, for the extended target tracking, Mahler in [28] proposed 

an extended version of the standard PHD filter, called the extended 

target PHD (ET-PHD) filter. In [28] , Mahler only gave the optimal 

theoretical derivation of the ET-PHD filter’s PHD recursion, but no 

corresponding closed-form solution. 

Under linear and Gaussian assumptions, a GM implementation 

of the ET-PHD filter [28] , called the ET-GM-PHD filter, has been de- 

rived by Granström et al. in [29] and [30] , and it has been used to 

track the extended targets with laser measurements [14] . In order 

to improve the precision in estimating the number of extended tar- 

gets, Orguner et al. derived a CPHD filter for extended targets and 

gave its GM implementation, i.e., the ET-GM-CPHD filter [31] . In 

the works [ 29 , 30 ] and [31] , only the kinematic properties of the 

extended targets’ centroids are estimated. Estimation of the tar- 

gets’ extensions is omitted to reduce the complexity. To solve this 

problem, an implementation of the ET-PHD filter using the ran- 

dom matrix introduced by Koch [8] was presented in [32] , and 

the resulting filter is called the extended target Gaussian inverse 

Wishart PHD (ET-GIW-PHD) filter. Subsequently, an implementa- 

tion of the ET-CPHD filter [31] using the random matrix was de- 

rived by Lundquist et al. [33] , called the extended target Gamma 

Gaussian inverse Wishart CPHD (ET-GGIW-CPHD) filter. Another 

implementing way of the ET-PHD filter [28] is the SMC form, or 

particle filter (PF) form. To the best of our knowledge, the SMC im- 

plementation of [28] has not been reported except the algorithm, 

introduced by Li et al. [34] , called the extended target particle PHD 

(ET-P-PHD) filter. 

Most of the current researches on implementations of the ET- 

PHD filter [28] are still limited to linear and Gaussian problems. 

Implementations of [28] under nonlinear and non-Gaussian as- 

sumptions need further exploration. Recently, to reduce the num- 

ber of particles in PF, Abdallah, Gning, Ristic, and Mihaylova in 

[35–37] developed a box-particle filter, where a box particle rep- 

resents a random sample occupying a small, controllable and 

nonzero-volume rectangular region in the target state space. In 

2012, A box-particle implementation of the standard PHD filter 

[21] , called the box-particle PHD filter, was presented by Schikora 

et al. [ 38 , 39 ]. Additionally, to handle the extended target tracking, 

several modified versions have been suggested in [40] and [41] . 

However, for the extended-target box-particle implementation of 

the standard PHD filter, at present there are no related reports. 

The main contribution of this work is a derivation of the box- 

particle implementation of the standard PHD filter, referred to as 

the extended target box-particle PHD (ET-Box-PHD) filter, in the 

context of multiple extended target tracking with clutter, false 

alarms and an unknown number of targets. The key of deriving the 

ET-Box-PHD filter is the definition of the cell likelihood function. In 

this work, we simplify this problem by introducing all cells from 

only one reliable partition into computation of the cell function. In 

addition, the proposed ET-Box-PHD filter can deal with nonlinear 

and non-Gaussian problems, and is suitable for the strong clutter 

surveillance areas, compared to the ET-GM-PHD filter introduced 

by Granström et al. in [30] . Besides, since the ET-Box-PHD filter’s 

new born box particles of the current time step are generated by 

the measurement set from the previous time step, its tracking re- 

sults appear the lag phenomenon. Finally, we validate the effective- 

ness of the ET-Box-PHD filter via linear and nonlinear examples. 

The remainder of the paper is organized as follows. 

Section 2 describes a problem formulation. The details of our 

algorithm, i.e., the ET-Box-PHD filter, are given in Section 3 , in- 

cluding the definition of cell likelihood for the ET-Box-PHD filter 

and details for the box-particle implementation of the standard 

PHD filter. The simulation results are presented in Section 4 . 

Finally, the conclusions and the future work are given in Section 5 . 

2. Problem formulation 

This section first gives the partitioning problem of the extended 

target tracking, based on ET-PHD filter [28] , in Section 2.1 . Then, a 

short introduction to interval analysis is given in Section 2.2 . Fi- 

nally, within the interval analysis framework, the extended-target 

dynamic motion model and measurement model are defined by 

Sections 2.3 and 2.4 , respectively. 

2.1. Measurement partitioning problem 

In the RFS-based extended target filters, as the ET-PHD filter 

[28] , the ET-GM-PHD filter [30] , the ET-GM-CPHD filter [31] , the 

ET-GIW-PHD filter [32] , the ET-GGIW-CPHD filter [33] , etc., an im- 

portant part of obtaining the closed-form solution to the filters is 

the measurement partitioning. Theoretically, the above filters re- 

quire all possible partitions of the current measurement set for 

its update. For the purpose of illustration, the process of partition- 

ing with a measurement set containing three individual measure- 

ments, Z k = { z (1) 
k 

, z (2) 
k 

, z (3) 
k 

} , is considered at time step k . This set 

can be partitioned as follows [28] , 
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where ℘ i is the i th partition, and W 

i 
j 

is the j th cell of partition ℘ i . 

Obviously, the number of possible partitions becomes very large 

as the total number of measurements increases, hence consider- 

ing using a subset that contains the most likely partitions approx- 

imates all possible partitions is necessary. Thus, the choice of the 

partitioning methods for approximating all possible partitions di- 

rectly impacts on the tracking performance. A partition is a di- 

vision of the measurement set into a few of non-empty subsets 

called cells [33] . The measurements contained in each cell all stem 

from the same source, either a target or a clutter source. 

There have been several attempts to solve the problem of the 

measurement partitioning. In [30] and [31] , distance partition and 

distance partition with sub-partition were adopted. In addition, in 

order to handle a densely cluttered environment with high accu- 

racy, Zhang and Wu suggested an affinity propagation clustering 
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