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a b s t r a c t 

Our objective here is to obtain quality-fused values from multiple sources of probabilistic distributions, 

where quality is related to the lack of uncertainty in the fused value and the use of credible sources. We 

first introduce a vector representation for a probability distribution. With the aid of the Gini formulation 

of entropy, we show how the norm of the vector provides a measure of the certainty, i.e., information, 

associated with a probability distribution. We look at two special cases of fusion for source inputs those 

that are maximally uncertain and certain. We provide a measure of credibility associated with subsets of 

sources. We look at the issue of finding the highest quality fused value from the weighted aggregations 

of source provided probability distributions. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The use of fusion to combine data provided by multiple sources 

about the value of a variable is common in many applications [1] . 

One rational for fusing probabilistic distributions provided by mul- 

tiple sources is to improve the quality of the information to de- 

cision makers [2] . Our interest here is looking at the problem of 

obtaining high quality fused values. One aspect of this quality is 

a reduction in the uncertainty of the information. Unfortunately, 

combining probability distributions information does not always 

result in a probability distribution with less uncertainty, this par- 

ticularly is the case when the data that are being fused is conflict- 

ing. In order to formally quantify the uncertainty associated with a 

probability distribution we will use the concept of entropy. A sec- 

ond contributing factor to the association of quality with a fused 

value is that we have used quality sources of information, the more 

of these sources used, the more credible the results of the fusion 

process. In order to capture this criterion of a quality fusion we 

introduce a measure of credibility associated with use of various 

subsets of the sources. Here we provide a quantification of the no- 

tion of a quality fusion based on the objective of providing fused 

values having little uncertainty based on a credible subset of the 

sources. 
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2. Vector representation of probability distributions 

Assume P i is a probability distribution on the space X = { x 1 , …, 

x n } where p ij is the probability of the occurrence of x j . Here, each 

p ij ∈ [0, 1] and 

∑ n 
j=1 p i j = 1 . For our purposes in the following we 

shall find it useful, at times, to represent a probability distribution 

as an n- dimensional vector P i = [ p i 1 , p i 2 , …, p in ]. Here the vector 

has the special properties that all its components lie in the unit 

interval and their sum is one. 

If P i for i = 1 to q are a collection of probability distribution 

vectors then their weighed sum, P = 

∑ q 
i =1 

w i P i , is another vec- 

tor whose components are p j = 

∑ q 
i =1 

w i p i j . Furthermore, if the 

weights are standard weights, w i ∈ [0, 1] and 

∑ q 
i =1 

w i = 1 , then 

P is also a probability distribution vector. 

Another operation on vectors is the dot or inner product, see 

Bustince and Burillo [3] . If P i and P k are two probability vectors on 

the space X then their dot product is 

P i · P k = 

n ∑ 

j=1 

p i j p k j 
. 

We emphasize that the dot product is a scalar value. Further- 

more, in the case where P i and P k are probability distributions then 

0 ≤ P i � P k ≤ 1. A special case of dot product is where P i and P k 
are the same then P i · P k = 

∑ n 
j=1 ( p i j ) 

2 
. For notational simplicity at 

times when it causes no confusion, we shall simply use P i P k for 

the dot product. 

An important concept that is associated with this self dot prod- 

uct is the idea of the norm of the vector. In particular then norm 
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Fig. 1. Angle between probabilistic vectors. 

‖ P i ‖ = 

√ 

P i P i = ( 
∑ n 

j=1 ( p i j ) 
2 ) 1 / 2 . The norm is referred to as the Eu- 

clidean length of a vector. Because of the special properties of the 

probability distribution vector, p ij ∈ [0, 1] and �i p ij =1, it can be 

easily shown that the maximal value of ‖ P i ‖ occurs when one 

p ij =1 and all other p ij =0. In this case, ‖ P i ‖=1. Furthermore, in 

this case of a probability distribution vector the minimum value 

of ‖ P i ‖ occurs when all p ij =1/ n and this has the value ‖ P i ‖ = 

( 
∑ n 

i =1 ( 
1 
n ) 

2 
) 1 / 2 = ( 1 n ) 

1 / 2 = 

1 √ 

n 
. We note for the self dot product, 

P i P i =‖ P i ‖ 2 we have a maximal value of one and minimal value of 
1 
n when all p 

i j 
= 

1 
n . 

In the following we shall benefit from the use of an illustration 

of the probability vector in the two-dimensional case as shown in 

Fig. 1. 

If P i and P K are two probability vectors it is known [4] that the 

Cosine of the angle between them denoted θ ik is expressed as 

cos ( θik ) = 

P i P k 
|| P i |||| P k || 

We note cos( θ ik ) is the dot product of P i and P k divided by their 

respective norms. It is well known that if cos( θ ik ) ∈ [0, 1], as is the 

case when P i and P k are probability distribution vectors, that θ ik ∈ 

[0, π
2 ]. 

We further see that if P i =P k then cos ( θik ) = 

P i P k || P i || || P k || = 

P 2 
i 

|| P i | | 2 = 

P 2 
i 

P 2 
i 

= 1 . Thus if P i and P k are the same, coincident, then cos( θ ik ) 

= 1. Furthermore it is known in this case that θ ik =0. At the 

other extreme is the case where P i and P k are orthogonal, 

P i P k = 

∑ n 
j=1 p i j p k j = 0 where cos ( θik ) = 

P i P k || P i || || P k || = 0 . We get in this 

case that θ ik = π
2 . We note that in the case where P i and P k are 

orthogonal then p ij =0 when p ik � = 0 and p ik =0 when p ij � = 0. 

We illustrate these extremes of coincident and orthogonal dis- 

tributions for the two dimensional case in Fig. 2. 

We note in the n -dimensional case a prototype example of or- 

thogonality occurs when P i has p i j1 = 1 and P k is p k j2 = 1 . Here 

they each completely support different outcomes. 

In [5] we suggested that cos( θ ik ) can be used as measure of the 

degree of compatibility, Comp, between the two probability distri- 

butions, thus 

Comp ( P i , P k ) = 

P i P k 
|| P i || || P k || 

Here Comp( P i , P k ) ∈ [0, 1] and the closer to one the more com- 

patible the probability distributions. Furthermore 1 − Comp( P i , P k ), 

denoted Conf( P i , P k ), can be seen as the degree of conflict between 

the two probability distributions. We note that if P i and P k are or- 

thogonal then Comp( P i , P k ) = 0 that Conf( P i , P k ) = 1. On the other 

hand if P i and P k are coincident, the same, then Comp( P i , P k ) = 1 

and Conf( P i , P k ) = 0. 

An interesting special case occurs when one of the distribu- 

tions, P i , has p i j = 

1 
n for all j . Here we previously noted ‖ P i ‖ = 

( 1 n ) 
1 / 2 . Consider now Comp( P i , P k ) where P i is this uniform prob- 

ability distribution. Here Comp( P i , P k ) = 

P i P k || P i || || P k || . However in this 

case 

P i P k = 

n ∑ 

j=1 

p i j p k j = 

1 

n 

n ∑ 

i =1 

p k j = 

1 

n 

and thus Comp( P i , P k ) = 

1 
n 

|| P k || ( 1 n ) 
1 / 2 = 

( 1 n ) 
1 / 2 

|| P k || = 

1 √ 

n 
= 

1 
|| P k || . Two spe- 

cial cases of P k are worth commenting on. If P k is a certain distri- 

bution, it has p kj =1 for one element, then || P k || = 1 and Comp( P i , 

P k ) = 

1 √ 

n 
. If P k is also a uniform probability distribution, all p kj = 1 

n , 

here then || P k || = 

1 √ 

n 
and we get Comp( P i , P k ) = 1. 

3. Entropy, certainty and information 

An important concept associated with a probability distribution 

on the space X = { x 1 , …, x n } is the idea of entropy [6,7] . The most 

common measure of entropy is the Shannon entropy. Here if P is a 

probability distribution on the space with p j the probability associ- 

ated with x j , then the Shannon entropy is H ( P ) = − ∑ n 
j=1 p j ln ( p j ) . It 

is well known that the maximal entropy occurs when all p i = 1 
n in 

which case H ( P ) = ln( n ). The minimal entropy occurs for the case 

when one p j =1 and all other p j =0, in this case H ( P ) = 0. What 

is clear is that the entropy is measuring the uncertainty associ- 

ated with the probability distribution, the more uncertainty the 

more entropy. The complimentary idea of entropy is certainty (or 

Fig. 2. Different relationships between probabilistic distributions. 
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