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a b s t r a c t

Kernel matrix optimization (KMO) aims at learning appropriate kernel matrices by solving a certain opti-
mization problem rather than using empirical kernel functions. Since KMO is difficult to compute out-of-
sample projections for kernel subspace learning, we propose a kernel propagation strategy (KPS) based on
data distribution similar principle to effectively extract out-of-sample low-dimensional features for sub-
space learning with KMO. With KPS, we further present an example algorithm, i.e., kernel propagation
canonical correlation analysis (KPCCA), which naturally fuses semi-supervised kernel matrix learning
and canonical correlation analysis by means of kernel propagation projections. In KPCCA, the extracted
correlation features of out-of-sample data not only incorporate integral data distribution information
but also supervised information. Extensive experimental results have demonstrated the superior perfor-
mance of our proposed method.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

Subspace learning is a prevalent research field in pattern recog-
nition and machine learning. Feature extraction and feature selec-
tion are two important topics in subspace learning. The former is
intended to find a set of projection directions using a certain crite-
rion to extract low-dimensional features from high-dimensional
data, while the latter aims at discovering an appropriate subset
from original feature set. In this paper, we focus on feature extrac-
tion. Typical feature extraction algorithms include principal com-
ponent analysis (PCA) [1], linear discriminant analysis (LDA) [2],
locality preserving projection (LPP) [3], and canonical correlation
analysis (CCA) [4].

PCA, LDA and LPP are three typical single-view subspace learn-
ing algorithms. PCA is an unsupervised method for seeking a linear
subspace where the projections of data possess maximum vari-
ance. Generally, PCA is difficult to well cater complex nonlinear
data, and thus kernel PCA (KPCA) [5,6] was proposed to solve the
problem. KPCA firstly maps original data into a higher (even infi-
nite) dimensional kernel space, and then implements linear PCA
in the kernel space. By utilizing class labels, LDA learns a discrim-
inant subspace where the classes of objects can be properly

separated. Similar to PCA, LDA is also a representative work of
globally linear subspace learning, and a kernel discriminant analy-
sis method [7] was proposed to extract nonlinear low-dimensional
face features. In addition, LPP can preserve local information hid-
den in data as much as possible. Likewise, kernel-based LPP algo-
rithms [8] have also been presented for better capturing
nonlinear relationships among data.

CCA is an important multi-view learning method. The method
aims at seeking a linear transformation for each of two views,
which was proposed by Hotelling [9] as early as 1936. Up to
now, CCA-related algorithms have been applied to many scientific
fields, including genomic data analysis [10], information forecast
[11], feature fusion [4], etc. CCA is linear and difficult to cater com-
plex nonlinear data in many real-world applications. To extract
nonlinear correlation features, some CCA variants [12–14] exploit
different graph structures of data to capture nonlinear information
among data. Recently, Shen et al. [15] proposed a unified multiset
CCA framework based on graph embedding for dimensionality
reduction (GbMCC-DR), which provides a unified viewpoint to
embed different graphs into correlation analysis algorithms. With
this framework, Shen et al. respectively borrowed the idea from
the graphs in LDA, local discriminant embedding (LDE) [16], and
marginal Fisher analysis (MFA) [17], and further developed three
example algorithms, i.e. GbMCC-LDA, GbMCC-LDE, and GbMCC-
MFA. In addition, Kernel CCA (KCCA) [18] is also a frequently used
algorithm for extracting nonlinear correlation features, which has
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been applied into many scientific fields, such as bioinformatics
[10], image retrieval [19], expression analysis [20], and blind iden-
tification [21]. Later, Zhu et al. [22] proposed a new kernel-based
CCA algorithm called mixed KCCA, which projects the original data
into a reproducing kernel Hilbert space with mixed kernels, i.e. a
linear combination between local and global kernels. To better
analyze complex but structured data, Arthur et al. [23] proposed
a kernel generalized CCA (KGCCA). Ashad et al. [24] presented a
higher-order regularized KCCA to overcome ill-posed solutions of
KCCA on some specific cases. To enhance the discriminative power
of nonlinear correlation features, Sun et al. [25] proposed kernel
discriminative CCA (KDCCA) that maximizes within-class correla-
tions of inter-view data and minimizes between-class correlations
of inter-view data in kernel spaces. Recently, Jing et al. [26] pre-
sented a novel multi-view subspace learning algorithm called ker-
nel intra-view and inter-view supervised correlation analysis
(KI2SCA). KI2SCA fully utilizes the within-class and between-class
correlation information from inter-view and intra-view data.

Most of kernel-based algorithms utilize empirical kernel meth-
ods (EKMs) in feature extraction. That is, kernel matrices are com-
puted based on empirical kernel functions. Recently, researchers
have developed a new way [27–31] to obtain kernel matrices
instead of using EKMs, i.e., learning kernel matrices by an opti-
mization problem. In this paper, we refer to the new way as kernel
matrix optimization (KMO). KMO is data-dependent and often
draws support from supervised information. The learned kernel
matrices by KMO are usually able to better reveal authentic nonlin-
ear relationships of data than those by EKMs. Due to the high data-
dependent property and the lack of out-of-sample supervised
information, KMO is usually difficult to effectively map out-
of-sample data into kernel spaces. Therefore, subspace learning
algorithms with KMO have some trouble in extracting subspace
features of out-of-sample data.

To solve the above problem, we propose a kernel propagation
strategy (KPS) based on data distribution similar principle for
out-of-sample projections. The main idea of KPS is that out-
of-sample projections of the kernel space should be similar to
those of its neighbor samples. With the help of KPS, we further pre-
sent a typical example algorithm, called kernel propagation CCA
(KPCCA), which integrates KMO into CCA. KPCCA can obtain the
subspaces with the well class separate property, i.e. intraclass com-
pactness and interclass separability. In addition, out-of-sample
correlation features extracted by KPCCA not only contain data dis-
tribution information of training and testing samples, but also
inherit supervised information from the learned kernel matrices
of training data, which are well beneficial for final recognition
tasks. To evaluate our proposed algorithm, we design extensive
experiments on four real-world image datasets. Promising experi-
mental results have showed the effectiveness of our algorithm in
image recognition tasks.

The rest of the paper is organized as follows. In the next section,
we provide a brief review of KCCA and some important concepts.
We introduce KPS, KPP and PCP in Section 3, and then present
our KPCCA algorithm in Section 4, In Section 5, extensive experi-
ments are designed for evaluating our algorithm. We conclude
the paper in the last section.

2. Preliminary

2.1. Kernel canonical correlation analysis

In many real-world applications, kernel-based subspace learn-
ing algorithms can cater complex real-world data to some extent,
and EKMs are commonly used for extracting nonlinear subspace
features. In the section, we briefly review KCCA [18] that is a typ-
ical subspace learning algorithm with EKMs.

KCCA is a two-view joint feature extraction method, and aims at
seeking a nonlinear transformation for each of two view datasets, so
we suppose that two view datasets are X ¼ x1; x2; . . . ; xnf g 2 Rp�n

and Y ¼ y1; y2; . . . ; ynf g 2 Rq�n, and a pair of samples
fxi; yigði ¼ 1;2; . . . ;nÞ come from the same object, where n is the
number of samples, and p (or q) is the sample dimension. In this
paper, X and Y are treated as two training sample sets, and the cor-

responding testing sample sets are eX ¼ ~x1; ~x2; . . . ; ~xNf g 2 Rp�N andeY ¼ ~y1; ~y2; . . . ; ~yNf g 2 Rq�N , where N denotes the number of testing
samples. Through two mappings xi # uðxiÞ 2 Rpu and
yi # /ðyiÞ 2 Rq/ ði ¼ 1;2; . . . ; nÞ, X and Y can be mapped into the
higher (even infinite) dimensional kernel spaces Xpu and Xq/ , i.e.
uðXÞ ¼ uðx1Þ;uðx2Þ; . . . ;uðxnÞ½ � 2 Rpu�n and /ðYÞ ¼ /ðy1Þ;/ðy2Þ;½
. . . ;/ðynÞ� 2 Rq/�n, where pu (or q/) is the dimension. By means of

the two mappings, eX and eY can be also mapped into the kernel

spaces, i.e.uðeXÞ ¼ uð~x1Þ;uð~x2Þ; . . . ;uð~xNÞ½ � 2 Rpu�N and /ðeY Þ ¼
/ð~y1Þ;/ð~y2Þ; . . . ;/ð~yNÞ½ � 2 Rq/�N . In addition, we assume uðXÞ and
/ðYÞ have been mean-normalized, and one can refer to [5] for
detailed introduction of the normalized method. For simplifying
the notation system of this paper, we uniformly utilize these nota-
tions in all the sections.

A pair of canonical projection directions au 2 Rpu and b/ 2 Rq/

can be obtained by maximizing the correlations between aT
uuðXÞ

and bT
//ðYÞ. More specifically, the optimization problem of KCCA

can be formulated as follows:

max
au ;b/

aT
uuðXÞ/ðYÞTb/

s:t: aT
uuðXÞuðXÞTau ¼ 1; bT

//ðYÞ/ðYÞTb/ ¼ 1
ð1Þ

By the kernel trick [5], it is assumed that au ¼ uðXÞa and

b/ ¼ /ðYÞb, where a 2 Rn�1 and b 2 Rn�1. Therefore, Eq. (1) can be
rewritten as

max
a;b

aTSxyb

s:t: aTSxxa ¼ 1; bTSyyb ¼ 1
ð2Þ

where Sxy ¼ KðxÞKðyÞ; Sxx ¼ KðxÞKðxÞ, and Syy ¼ KðyÞKðyÞ. In addition,

KðxÞ ¼ uðXÞTuðXÞ ¼ kxðxi; xjÞ
� �n;n

i;j¼1 2 Rn�n and KðyÞ ¼ /ðYÞT/ðYÞ ¼
kyðyi; yjÞ
� �n;n

i;j¼1
2 Rn�n are kernel matrices, and the kernel functions

kx and ky may be any kernel satisfying the Mercer’s condition [5],
such as Gaussian kernel, linear kernel, and polynomial kernel.

Eq. (2) can be solved by using the Lagrangian multiplier
method. The Lagrangian L is given by

L ¼ aTSxybþ kx
2

1� aTSxxa
� �þ ky

2
1� bTSyyb
� � ð3Þ

By setting the derivative of L with respect to a and b to zero, we
have

@L
@a

¼ Sxyb� kxSxxa ¼ 0 ð4Þ
@L
@b

¼ STxya� kySyyb ¼ 0 ð5Þ

Multiplying both sides of Eqs. (4) and (5) by aT and bT respectively,
we obtain

aTSxyb ¼ kxaTSxxa ¼ kx

bTSTxya ¼ kyb
TSyyb ¼ ky

So kx ¼ kTx ¼ ðaTSxybÞT ¼ bTSTxya ¼ ky. Let k ¼ kx ¼ ky, then Eqs. (4)
and (5) can be equally transformed into the following generalized
eigenvalue problem:
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