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a b s t r a c t

Maximum margin criterion (MMC) is a popular method for dimensionality reduction or feature extrac-
tion. MMC can alleviate the small size sample (SSS) problem encountered by linear discriminant analysis
(LDA) and extract more discriminant vectors than LDA. However, the objective function of MMC is
derived from L2-norm, which makes MMC be sensitive to noise and outliers. Besides, the basis vectors
of MMC are dense, which makes it hard to explain the obtained features. To address the drawbacks of
MMC, in this paper, we propose a novel sparse L1-norm-based maximum margin criterion (SMMC-L1).
L1-norm rather than L2-norm is used in the objective function of SMMC-L1. Besides, L1-norm is also used
as a lasso penalty to regularize the basis vectors. An iterative algorithm for solving SMMC-L1 is proposed.
Experiment results on some databases show the effectiveness of the proposed SMMC-L1.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

Dimensionality reduction plays a core role in many machine
learning and pattern recognition problems [1]. In the past decade
years, a lot of dimensionality reduction methods have been pro-
posed in the literatures [2]. Among the various methods, principal
component analysis (PCA) [1,3] and linear discriminant analysis
(LDA) [1,3,4] are the two most famous ones.

PCA is an unsupervised dimensionality reduction approach
which aims to find a representative projection transformation
matrix such that the variance of the given data is maximized. On
the contrary, LDA is a supervised dimensionality reduction
approach which aims to find a discriminative projection transfor-
mation matrix on which the between-class distance is maximized
and meanwhile the within-class distance is minimized. For classi-
fication problem, it is generally believed that LDA can obtain better
classification performances than PCA.

LDA, however, suffers from the so-called small sample size (SSS)
problem or undersampled problem when the number of samples is
smaller than the dimensionality of samples. To address this prob-
lem, many extensions to LDA, e.g., Fisherfaces [4], null space LDA
[5], complete LDA [6] and maximum margin criterion (MMC) [7–
10], etc., have been developed in the recent years.

Among these LDA extensions, MMC is an effective one. Different
from LDA, which uses the generalized Rayleigh quotient as the dis-
criminant criterion, MMC uses the difference of the between-class
scatter and within-class scatter as the discriminant criterion. Then
MMC can alleviate the SSS problem since it does not compute the
inverse matrix. Besides, MMC can obtain more projection vectors
than LDA. Motivated by the large-margin principle, some other
large-margin based learning method have been proposed, e.g. the
large-margin based weakly supervised dimensionality reduction
method [11] which integrates two aspects of the large principle
(angle and distance), the large-margin multiview information bot-
tleneck (LMIB) algorithm [12], and the large-margin multi-label
causal feature learning method (LMCF) [13].

The traditional PCA, LDA and MMC methods ignore the possible
nonlinearity inherent in data. The manifold learning algorithms,
however, can discover the underlying manifold structure hidden
in the data space. Many manifold-based learning methods and
their extensions have been proposed, e.g. Isomap [14], Laplacian
Eigenmap [15], Hessian regularized support vector machines
(SVM) [16], and multiview Hessian regularized logistic regression
(mHLR) [17].

A common property of aforementioned approach is that all
these methods are derived from L2-norm. L2-norm based dimen-
sionality reduction approaches, however, are sensitive to noised
and outliers since the square operation in L2-norm will magnified
the effect of noise and outliers [18]. In [19,20], Liu and Tao pointed
out that L1-norm based methods gives a small weight to a large
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error training sample and a large weight to a small error training
sample during the optimization procedures. Generally, L1-norm
is much more robust to outliers than L2-norm. Then, researchers
utilize L1-norm instead of L2-norm to develop robust dimensional-
ity reduction methods [18,21–30]. For example, there are some L1-
norm-based PCA approaches, which include L1-PCA [23], R1-PCA
[22], PCA-L1 [18,25], 2DPCA-L1 [21] and L1-norm-based tensor
PCA (TPCA-L1) (TPCA-L1), etc., have been developed in the litera-
ture. Similarly, some L1-norm-based LDA [26–30] are also pro-
posed in recent years. These L1-norm-based dimensionality
reduction methods have demonstrated encouraging performances
on some data sets. In some situations, sample labels rather than
samples are corrupted by noise. In [31], Liu and Tao discussed
the classification problem where sample labels are randomly cor-
rupted, and addressed two fundamental problems in the scenario.
Xu et al. [32] pointed that Cauchy loss function is also robust to
outliers and advantageous over least squared loss function and
least absolute function.

The projection vectors learned by the above methods, however,
are still dense and then it is difficult to explain the obtained features.
To address the issue, sparse methods have been received increasing
attention and many sparse dimensionality reduction approaches
have been proposed in recent years [33]. By first reformulating the
conventional PCA as a regression optimization problem and then
using the elastic net to penalize the basis vectors, Zou et al. [34] pro-
posed the sparse PCA (SPCA) method. The structured sparse PCA,
which is a generalization of SPCA, is further proposed by Jenatton
et al. [35]. Liu et al. [36] proposed an efficient and paralleledmethod
of SPCA using graphics processing units (GPUs), which can process
large blocks of data in parallel. By using the graph embedding frame-
work[37]andspectral regression,Caietal. [38,39]proposedaunified
sparse subspace learning (USSL) framework which first cast various
dimensionality reductionmethods into regressionproblemandthen
use L1-normto regularize thebasis vectors. Similarly, byusing patch
alignment technique, Tao et al. [40] also proposed a unified sparse
dimensionality reduction framework called manifold elastic net. By
usingthestructuredsparsity-inducingnormtopenalty thebasisvec-
tor learned by linear graph embedding, Wang [41] proposed struc-
tured sparse linear graph embedding (SSLGE), which is also a sparse
learning framework. Meng et al. [42] and Wang et al. [43], respec-
tively, extended PCA-L1 and 2DPCA-L1 with sparsity. By using an
overcomplete dictionary, sparse coding [44] can represent a signal
sparsely. Recently, Liu et al. [45] proposed a novel sparse coding
method, called multiview Hessian discriminative sparse coding
(mHDSC). mHDSC integrates Hessian regularization with discrimi-
native sparse coding formultiview learning problems.

In this paper, we propose a novel spare L1-norm-based maxi-
mum margin criterion (SMMC-L1). We first replace L2-norm in
conventional MMC with L1-norm, and then utilize the elastic net
to penalize the projection vectors. The role of L1-norm in the pro-
posed SMMC-L1 method is twofold. One is the robust measure-
ment of the between-class dispersion and the within-class
dispersion. The other is used as penalty by which the spare basis
vectors can be obtained. We also propose an iterative algorithm
to solve SMMC-L1.

The remainder of the paper is organized as follows. The conven-
tional LDA and MMC are briefly reviewed in Section 2. In Section 3,
we present the SMMC-L1 method, including its objective function
and algorithmic procedure. The experiment results are reported in
Section 4. Finally, we conclude the paper in Section 5.

2. Outline of LDA and MMC

Let X ¼ fxi
j; j ¼ 1;2; . . . ;ni; i ¼ 1;2; . . . ; kg 2 Rd�n be the given

training samples, where xi
j is the jth samples of the ith class, k is

the number of the classes, ni is the number of the samples of ith
class, d is the dimensionality of the training samples and

n ¼Pk
i¼1 ni is the number of the data set. In LDA (termed as LDA-

L2), between-class scatter matrix and within-class scatter matrix,
are respectively defined as follows:

Sb ¼
Xk
i¼1

niðmi �mÞðmi �mÞT ; ð1Þ

Sw ¼
Xk
i¼1

Xni
j¼1
ðxi

j �miÞðxi
j �miÞT ; ð2Þ

where mi ¼ ð1=niÞ
Pni

j¼1 x
i
j is the mean of the ith class and

m ¼ ð1=nÞPk
i¼1
Pni

j¼1 x
i
j is the global mean of the data set.

The optimal projection vector w 2 Rd of LDA can be obtained by
maximizing the following so-called Fisher criterion:

JðwÞ ¼ wTSbw
wTSww

: ð3Þ

If the matrix Sw is nonsingular, the optimal projection vector w is
the leading eigenvector of S�1w Sb.

The conventional LDA cannot work when the matrix Sw is singu-
lar. To address this issue, maximum margin criterion (MMC) (ter-
med as MMC-L2) [7–10] has been proposed. The discriminant
criterion based on MMC is defined as follows

JðwÞ ¼ wTSbw�wTSww: ð4Þ
The optimal projection vector w is the leading vector of Sb � Sw.

3. Sparse L1-norm-based maximum margin criterion (SMMC-
L1)

3.1. Problem formulation

In this subsection, we will present our proposed sparse L1-
norm-based maximum margin criterion.

Let

Hb ¼ ffiffiffiffiffi
n1
p ðm1 �mÞ; ffiffiffiffiffi

n2
p ðm2 �mÞ; . . . ;

ffiffiffiffiffi
nk
p ðmk �mÞ½ �; ð5Þ

Hw ¼ x1
1 �m1; . . . x1

n1
�m1; . . . ; xk

1 �mk; . . . ; xk
nk
�mk

h i
:

ð6Þ
By simply transforming, Eq. (4) can be reformulated as

JðwÞ ¼ wTHb

�� ��2
2 � wTHw

�� ��2
2 ð7Þ

where �k k2 denotes L2-norm. From Eq. (7) we can find that the
objective function of MMC-L2 is derived from L2-norm. However,
L2-norm is more sensitive to noise and outliers than L1-norm since
the square operation in L2-norm will magnify the effects of the
noise and outliers. Then L1-norm based approaches are believed
to be more robust to noise and outliers than L2-norm based ones.
Besides, sparse basis vectors, which can be obtained by using L1-
norm penalty, can encode semantic information and obtain more
discriminant information than condense basis ones. Motivated by
these ideas, we propose to maximize the objective function as
follows:

FðwÞ ¼ wTHb

�� ��
1 � wTHw

�� ��
1 � k wk k1 �

g
2

wk k22 ð8Þ

where k > 0 and g > 0 are tuning parameters. It is difficult to solve
Eq. (8) directly and obtain a global optimal solution due to the abso-
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