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a b s t r a c t

In this paper, we propose a new multi-scale morphological approach to curve evolution useful for object
extraction through segmentation. The homogenous image structures that characterize the segmentation
process are edges and terminations. Normally the conventional morphological snake (MS) technique employs
morphological binary level-set operators for realizing forces. These operations handle definite components of
the PDE (partial differential equation) used for modeling the dynamic system. The proposed model can
segment with reasonably high level of accuracy and efficiency while ensuring smooth segmentation at object
boundaries with scale space continuity. Application of discrete image force in MS is a per pixel decision based
on the sign of image force PDE component. In the continuous domain however, the intensity of the image force
PDE component is the primary factor for snake evolution. In our model we embed scale-space continuity into
the morphological operators dictated by MS in order to realize the image force both in intensity and direction.
Thus, our model confirms to the speed, agility and robustness of morphological snakes with regard to
segmentation while ensuring enhanced efficiency of segmentation under noise. We have rated the
performance both on qualitative and quantitative basis against benchmark results, on a set of 2D gray-scale
real images both in absence and presence of noise. A comparative study has also been carried among our
method, MS, geodesic active contour (GAC) and Distance Regularized Level Set Evolution (DRLSE).

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Morphological snakes and geodesic active contours make up the
most widely used algorithms for image segmentation and object
tracking and in similar problems of computer vision. Curve evolu-
tion in a parameter free environment along with the ability to adapt
to shapes of unknown topology make up some of the reasons for
their extensive applications. Here, a curve evolves to fit and track an
object in unknown image topologies by deforming its shape. This
deformation occurs in an attempt to minimize internal and external
energies along its boundary. Lowering the internal energy keeps the
curve smooth and in such cases the external energy attracts the
snake towards image structures such as edges and terminations.

Curve deformation occurs by iteratively solving a partial differential
equation (PDE) that leads to lowering of both internal and external
energies of the snake over time. Concept of geodesic active contours [1]
as well as themethod suggested by Shi and Karl [2] introduced the use
of level-sets for curve evolution. The former techniques are rather slow
and require large number of iterations for the snake to reach
equilibrium. Morphological Snakes [3,4] handle this problem by using

morphological operations of dilation and/or erosion and morphologi-
cal line operations, with which the solution of the snake PDE in
successive iterations is always embedded in a binary level-set. Such
morphological operators convect a balloon force component respon-
sible for bringing the snake to regions of interest (ROI), an internal
smoothing component responsible for smoothing high curvature
segments and an image force component that attracts the snake
towards edges. While MS presents a much faster alternative for snake
evolution in comparison to GAC, its fixed threshold margin regulariza-
tion for balloon force can have negative effects. Since the image
attachment term relies on the balloon force tern to bring the snake
to ROI, a noisy pixel environment can lead to irregular snake
attachment. This occurs when the balloon force component does not
agree with image attachment under the effect of a universal threshold
margin. In particular there are two scenarios where balloon force may
disagree with image force in a noisy pixel environment:

� For a low threshold margin, the balloon force may fail to bring
the snake to ROI causing the snake to halt under the effect of
image force, at bad local minima.

� For a high threshold margin, a prominent balloon force may
lead the snake beyond actual ROI or good local minima,
unperturbed by the less strong image force.
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In the proposed work, we remove such threshold margin regulariza-
tion of the balloon force component. This is conducted by formulating
a discrete adaptive force that depends on a multitude of threshold
margins instead of a single margin. Such multitude of threshold mar-
gins can be obtained in a multi-scale environment. Multi-scale snake
evolution begins over a blurred version of the image with consecutive
de-blurring, followed by snake evolution in each epoch. In the
continuous domain, this adaptive force resembles the image force
under scale space continuity, as applicable for Kass snakes [11]. The
force is termed adaptive as it solves the aforesaid scenarios by
automatically exchanging roles of image exploration and attachment.
In this paper we formulate a morphological operator to convect adap-
tive force that renders the agility of MS but with greater robustness in
segmentation. In Section 3.1 the formulation of the adaptive force
under scale space continuity, from the snake evolution PDE, is shown.
Here, we also come up with a morphological operator that can convect
this adaptive force. In Section 3.2, the significance of the adaptive force
is illustrated, with respect to image attachment in noisy localities.
Finally extensive comparative results among MS, GAC, proposed
method and DRLSE [5] techniques, are presented in Section 4.

2. Theoretical background

With the introduction of Kalman snakes [7,8] and snakes where
image forces were applied through scale space continuity [3,4,9–11],
simple feature localization was made possible but with low through-
put. Segmentation of multiple features however is not possible with
the aforesaid methods. A brief survey of methods used in deformable
models prior to the application of level-sets has been presented by
McInerney and Terzoupoulos in [12]. The level-set method [1,13–15]
form a more efficient and robust approach to curve deformation
compared to parametric active contour models [16–19], where the
curve deformation PDE is solved numerically. The property of topology
preservation along with the sub-pixel accuracy of geometric deform-
able models is coupled with the level-set technique to obtain a
methodology as in [20], which improves segmentation quality but
with overhead in time. This overhead persists in the ground work
active contour models of Chan and Vese [21], Feng et al. [22] and
Goldenberg et al. [23], as well as in statistical region based active
contour models [24,25]. Moreover edge detection in a complex and
noisy environment persists to be a challenge. Countourlet transform
integrated with the active contour model [26,27] can detect edges in a
noisy environment but it still does not address the limitations of active
contours with respect to throughput. In comparison to countourlet
transform, the edge detection technique of Marr and Hildreth suffers
at noisy edges but provides an elegant theoretical background for
convecting image forces. Luis Alvarez et al. [3,4] introduced a curve
evolution technique that uses the latter edge detection technique but
is fast as it utilizes morphological binary operations to solve the level-
set PDE. This model however performs only fairly near noisy edges
and is less smooth in comparison to the classical active contour model
suggested by Caselles et al. [1].

2.1. Morphological snake evolution using binary level sets

The Osher–Sethian [1,28,29] level-set method describes a curve
that evolves with time in an implicit form as the level-set of an
embedding functional. If CðtÞ ¼ fðx; yÞjuðt; ðx; yÞÞ ¼ 0g represents the
curve with u : Rþ �R2-R being the implicit representation of
the curve then the curve evolution can be obtained in terms of this
implicit functional as given by the PDE:

∂u
∂t

¼ gðIÞj∇ujdiv ∇u
j∇uj

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1a

þgðIÞj∇ujν|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
1b

þ∇gðIÞ∇u|fflfflfflfflffl{zfflfflfflfflffl}
2

ð1Þ

Here, ν represents a balloon force parameter and g(I) is an energy
functional on the image I : R2-Rþ , which is low at the proximity
of the edges and is given by

gðIÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þαj∇GσnI j

p ð2Þ

The PDE consists of two energy terms as given in Eq. (1). Part 1 of
Eq. (1) represents the internal energy consisting of smoothing
component 1a, which smoothens the curve at high curvature
segments and an inflation and/or deflation term 1b that brings
the curve to interesting areas of the image space which can be
found in the model methodized by Caselles et al. [1]. Luis Alvarez
et al. [3,4] suggests a morphological model for curve deformation
that solves the PDE Eq. (1), maintaining an appreciable level of
throughput by improving upon convergence speed associated with
numerical algorithms. This methodology has been adopted from
the work of Osher and Sethian [29], which suggests that a curve is
described by the boundary of a binary piecewise constant function
u : R2-f0;1g that takes a value uðpÞ ¼ 1 for every p inside the
curve and a value uðpÞ ¼ 0 for every p outside the curve, where p
represents an ordered pair (x,y). Through the application of
morphological operations on this level-set method, the curve is
made to implicitly evolve with time, starting with a zero level set
uðt ¼ 0; pÞ. The morphological operations convect:

� Balloon force
� Smoothing force
� Image force

The first two control the internal energy of the curve, whereas the
third attracts the curve towards the ROI. The component equation
that convects the balloon force is provided by part 1b of the PDE in
Eq. (1), given as

∂u
∂t

¼ gðIÞj∇ujν ð3Þ

which is evident from the models presented in [1,14,30,31]. The
morphological operations of dilation and erosion over u serves as
an infinitesimal generator of Eq. (3), where dilation and erosion
operations are defined as

ðDduÞðpÞ ¼ sup
qAdB

uðp�qÞ

ðEduÞðpÞ ¼ inf
qAdB

uðp�qÞ ð4Þ

In both the cases, d is the radius of the operator, B is a disk of
radius unity and p, q represent distinct ordered pairs (x,y). dB is the
dth homothetic of B i.e. dB¼ B � B � …|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

d times

.

Here, g(I) controls the balloon force at different segments of the
curve. Given the value of ν, the solution of PDE component Eq. (3) is
given by the morphological operations of dilation or erosion. At the
ðnþ1Þth iteration, the solution to PDE Eq. (3) is approximated as

unþ1ðxiÞ ¼
ðDdunÞðxiÞ if gðIÞðxiÞ4θ and ν40
ðEdunÞðxiÞ if gðIÞðxiÞ4θ and νo0

(
ð5Þ

where g(I) is discretized with the threshold θ. Next, morphological
operators are devised for infinitesimal generation of the smoothing
component of PDE Eq. (1), given as

∂u
∂t

¼ gðIÞj∇ujdiv ∇u
j∇uj

� �
ð6Þ

The discrete operation ðFduÞðxÞ ¼ SIduðxÞþ ISduðxÞ=2 forms the infi-
nitesimal generator of the PDE component Eq. (6) as suggested by
Luis Alvarez et al. [3,4] and mathematically supported by Catte et al.
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