
A new convex objective function for the supervised learning of single-layer
neural networks
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a b s t r a c t

This paper proposes a novel supervised learning method for single-layer feedforward neural networks.

This approach uses an alternative objective function to that based on the MSE, which measures the

errors before the neuron’s nonlinear activation functions instead of after them. In this case, the solution

can be easily obtained solving systems of linear equations, i.e., requiring much less computational

power than the one associated with the regular methods. A theoretical study is included to proof the

approximated equivalence between the global optimum of the objective function based on the regular

MSE criterion and the one of the proposed alternative MSE function.

Furthermore, it is shown that the presented method has the capability of allowing incremental and

distributed learning. An exhaustive experimental study is also presented to verify the soundness and

efficiency of the method. This study contains 10 classification and 16 regression problems. In addition, a

comparison with other high performance learning algorithms shows that the proposed method

exhibits, in average, the highest performance and low-demanding computational requirements.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

For a single-layer feedforward neural network, with linear
activation functions, the weight values minimizing the mean-
squared error function (MSE) can be found in terms of the pseudo-
inverse of a matrix [1,2]. Furthermore, it can be demonstrated that
the MSE surface of this linear network is a quadratic function of
the weights [3]. Therefore, this convex hyperparaboloidal surface
can be easily traversed by a gradient descent method. However, if
nonlinear activation functions are used then local minima can
exist in the objective function based on the MSE criterion [4–6]. In
[7] it was shown that the number of such minima can grow
exponentially with the input dimension. Only in some specific
situations it is guaranteed the lack of local minima. In the case of
linearly separable patterns and a threshold MSE criterion, it was
proved the existence of only one minimum in the objective
function [8,9]. Nevertheless, this is not the general situation.

The contribution of this work is to present a new convex
objective function, equivalent to the MSE, that does not contains
local minima and the global solution is obtained using a system of
linear equations. This system can be solved, for each output, with

a complexity of OðN2Þ, where N is the number of parameters of the
network.

The problem of local minima for one-layer networks was
rigorously demonstrated in [5], where an example with a sigmoid
transfer function, for which the sum of squared errors presents a
local minimum, is given. They pointed out that the existence of
local minima is due to the fact that the error function is the
superposition of functions whose minima are at different points.
In this situation, a closed form solution is no longer possible.

Previous approaches, during the last decades, have been
presented to overcome the problems emerged by the presence
of these stationary points in single-layer neural networks. In [10],
a globally convergent natural homotopy mapping is defined for
single-layer perceptrons by deformation of the node nonlinearity.
This homotopy tracks a possibly infinite number of weights by
transforming coordinates and characterizing all solutions by a
finite number of distinct and unique solutions. Although this
approach ensures computation of a solution, it does not provide
global optimization [1]. At the same time, these authors proposed
in [11] a method for both the a posteriori evaluation of whether a
solution is unique or globally optimal and for a priori scaling of
desired vector values to ensure uniqueness, through analysis of
the input data. Although these approaches are potentially helpful
for evaluating optimality and uniqueness, the minima are
characterized only after training is complete. In addition, other
authors have proposed methods for different criteria from the
MSE to avoid the problem of local minima in the objective
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function to minimize. In this sense, in [12] it was proposed an on-
line additive learning method for matching cost functions based
on the Bregman divergence.

Pao [2] proposed the functional link approach that obtains an
analytical solution of the weights establishing a system of linear
equations Xw¼ z, where X is a matrix formed by the input
patterns, w is the weight vector and z is another vector formed by
the inverse of the activation function applied over the desired
output. The dimensions of matrix X are S� N, where S is the
number of training patterns and N is the number of weights. As
Pao mentions in his work, if S¼N and the determinant of X is not
zero then the solution can be obtained by w¼ X�1z. However, this
is not the common situation, because in real data sets usually
S4N or SoN. For these last cases, Pao analyzes the situation
separately. In the case SoN, a large number of solutions could be
obtained (perhaps an infinite number of them) which is not
obviously desired. He proposed a partition of X to avoid in some
way this problem. In the other case, S4N, an infinitely
large number of orthonormal functions could be generated, and
then a method based on the pseudoinversion is proposed
ðw¼ ðXT XÞ�1XT zÞ. However, as he already mentions, this formula-
tion could be often unacceptable as is indicated by the high error
value at the end of the learning process.

Some studies for multilayer feedforward neural networks have
used similar results to the one proposed in [2] for the back-
propagation of the desired output or for the learning of the
weights of the output layer. Specifically, there have been heuristic
proposals of least-squares initialization and training approaches
[13–17]. Of special interest is [15], where three least-squares
initialization schemes were compared for speed and performance.
Nevertheless, these methods did not rigorously consider the
transformation of the desired output through the nonlinear
activation functions as they did not take into account the scaling
effects of the slopes of nonlinearities in the least squares problem.
This is an important issue as it will be discussed later.

Lastly, in a previous paper [18], a new learning method, for
single-layer neural networks, based on a system of linear
equations was presented. This approach is possible due to the
use of a new objective function that measures the sum of the
squared errors before the nonlinear activation functions instead of
after these functions, as it is usually done. Although the
experimental results presented in this previous work support
the validity and soundness of the proposed method, some
theoretical research was still necessary to proof the equivalence
between the global optimum of the objective function based on
the MSE after the nonlinearities and the proposed objective
function (minimization of the MSE before the nonlinear func-
tions). This paper completes the mentioned research presenting a
theoretical analysis and considering in the objective function the
scaling effects of the slope of the nonlinear transfer function.
Besides, a new set of linear equations, to obtain the optimal
weights for the problem, are derived.

2. Description of the proposed method

The architecture of the considered neural network is shown in
Fig. 1. The inputs are denoted as xis and outputs as yjs being
i¼ 0;1; . . . ; I; j¼ 1;2; . . . ; J and s¼ 1;2; . . . ; S. The numbers I, J and S

represent the number of inputs, outputs and training samples,
respectively. The network contains only a single layer of J output
neurons with nonlinear activation functions f1; f2; . . . ; fJ . The set of
equations relating inputs and outputs is given by

yjs ¼ fjðzjsÞ ¼ fj

XI

i ¼ 0

wjixis

 !
; j¼ 1;2; . . . ; J; s¼ 1;2; . . . ; S; ð1Þ

where wj0 and wji; i¼ 1;2; . . . ; I, are, respectively, the bias and the
weights associated with neuron j (for j¼ 1;2; . . . ; J). The system
presented in (1) has J � S equations and J � ðIþ1Þ unknowns. In
practice, since the number of data is large ðSb Iþ1Þ, this set of
equations does not have a solution, and consequently, it cannot be
solved analytically.

Thus, the widely employed approach to obtain the optimal
weights is based on the optimization, by means of an iterative
procedure, of an objective function that measures the errors
obtained by comparing the real output of the network and some
desired response.

2.1. Regular objective function: mean-squared error

after nonlinearities

Currently, different objective functions have been proposed
being one of the most used that based on the mean-squared error
(MSE) criterion. This is the function considered in this work. Thus,
the usual approach is to consider some errors, ejs measured after

the nonlinearities. Therefore, the set of equations relating inputs
and outputs is now defined as

ejs ¼ djs�yjs ¼ djs�fj

XI

i ¼ 0

wjixis

 !
; j¼ 1;2; . . . ; J; s¼ 1;2; . . . ; S;

ð2Þ

where djs is the desired output for neuron j and the training
pattern s. To estimate (learn) the weights, the sum of squared
errors defined as

MSEA¼
XS

s ¼ 1

XJ

j ¼ 1

e2
js ¼

XS

s ¼ 1

XJ

j ¼ 1

djs�fj

XI

i ¼ 0

wjixis

 ! !2

ð3Þ

is minimized. There exists many gradient descent methods that
can be used to obtain a saddle point of this function.

It is important to note that, due to the presence of the
nonlinear activation functions fj, the function in (3) is nonlinear in
the weights. In this situation, the absence of local minima in MSEA

is not guaranteed, as was demonstrated in [5]. Therefore, a
gradient descent method can be stuck in a local minimum instead
of achieving the global optimum of the objective function.

2.2. New objective function: mean-squared error

before nonlinearities

In order to avoid the problems mentioned in the previous
section, a new approach for the supervised learning of single-layer
feedforward neural networks is proposed. This method is based
on the use of an alternative objective function that measures the
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Fig. 1. Architecture of a single-layer feedforward neural network.
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