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a b s t r a c t

Given two graphs, the aim of graph matching is to find the ''best'' matching between the nodes of one
graph and the nodes of the other graph. Due to distortions of the data and the complexity of the
problem, in some applications, completely automatic processes do not return a satisfactory graph
matching. We propose a method to perform active and interactive graph matching in which an active
module queries one of the nodes of the graphs and the oracle (human or artificial) returns the node of
the other graph it has to be mapped with. The interactive algorithm reaches the matching desired by the
user in few interactions, since by imposing a node-to-node mapping, other ones are automatically
amended. The method uses any graph matching algorithm that iteratively updates a probability matrix
between nodes since it only requires access to the probability matrix and to update the costs between
nodes and arcs. We present and practically validate different active strategies.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

On one hand, active learning is a discipline concerned with the
design and development of algorithms that allow computers to
evolve behaviours based on examples [1,2]. In this discipline, a
learner can take advantage of examples to capture characteristics
of interest from the data respect of their class. With the learned
characteristics, the learner deducts the class of the new examples.
On the other hand, error-tolerant graph matching [3] is another
discipline that aims to find the best matching between the nodes
of both graphs so that the cost of this optimal matching is the
minimum among all possible matchings. If we combine the active
learning and error-tolerant graph-matching disciplines, we can
define a model in which examples and classes in the machine-
learning discipline are composed of the set of nodes of one of the
graphs and the nodes of the other graphs, respectively. Therefore,
what we want to find is the best matching between the nodes of
both graphs but with the minimum necessary help of an oracle.
Note that we do not perform a learning strategy such as learning
graph matching [69] or semi-supervised learning [70] since we do
not modify the labelling cost function.

Normally, two basic modules compose pattern recognition
systems [1]. The first one extracts the main features given the
raw data. The second one extracts the class of the object or simply
obtains the most similar object from a database. In the semi-

automatic methods, a specialist usually interacts in the first
module and modifies the automatically extracted features. Then,
with the updated features, the automatic matching or query
process is performed obtaining a result with higher quality. For
instance, in the case of AFIS [4], the specialist usually verifies and
modifies the extracted minutiae of the fingerprint to be queried.
However, it is not so usual to apply any interaction on the second
module [5,6].

Fig. 1 shows a classical semi-automatic image-correspondence
process in which an intermediate step has been incorporated. We
wish to compare input images I1 and I2. Both images are repre-
sented by some kind of representation that explore the local parts
of the image g1 ¼ g I1

� �
and g2 ¼ g I2

� �
, for instance vectors or

attributed graphs. There is a first step in which representations g1

and g2 of the images I1 and I2 are obtained using methods such as
[7,8]. Then, in the semi-automatic methods, there is a second step
in which the user edits the local parts of these representations
(erase, create or modify their positions or values). We call the user
feedback w1 and w2. Note that the user not only has access to the
obtained representation but also to the original image since it is a
valuable knowledge for the human intelligence. The last step
obtains the matching between nodes f and a dissimilarity measure
or cost Cf in a completely automatic way through methods such as
[9–14].

The aim of this paper is to add interactivity to the third step of
Fig. 1 and to keep the first and second steps as they are. The
interactive part of this method was presented in [15] and the
active one in [16]. In this paper we present the whole method and
more active strategies. This new interactive method is useful in
two types of applications. The first ones are applications where it
is crucial to have a perfect match but data is very noisy and it is
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difficult to extract the local parts of objects even though the
number of these local parts may not be large. For instance, in
medical applications, in which graphs are extracted from images.
Other applications are the ones in which graphs have a large
cardinality. Then, graph-matching algorithms have to be very
greedy and they are unlikely to obtain a satisfactory match.
Conversely, this method is not useful in applications where an
unclassified graph has to be compared with a large number of
graphs in a database. For instance, fingerprint identification. The
human interaction in each graph comparison would increase the
run time considerably. In this type of application, it is usual to
interact in the first step of the pattern recognition process as
described in Fig. 1. The extracted graph is corrected in the first step
of the recognition process and graphs of the database are
corrected in the enrolment process.

The rest of the paper is organised as follows. In the following
section, we present the basic notation and summarise the well-
known methods used. In Section 3, we present the active and
interactive method, in other words, we show how to add interactivity
to the third step of the image correspondence process (Fig. 1). In
Section 3.3, we show the algorithm to compute the active and
interactive graph matching. Finally, in Section 4 we show the
practical evaluation and we conclude the paper in Section 5.

2. Notation and methods

In this section, we summarise the basic notation and concepts
of the two disciplines we have combined in our model: Graph
matching and Active learning.

2.1. Graph matching

Let g1 and g2 be two attributed graphs. We suppose that g1 and
g2 have the same number of nodes n since they have been
enlarged enough to incorporate null nodes. We define nodes in
g1 and g2 as v1i AΣ1

v and v2aAΣ2
v and we define arcs as e1ijAΣ1

e and
e2abAΣ2

e , 8 i; j; a; bA 1;…;nf g. Moreover, let f be a bijective labelling
between nodes of both graphs. The cost of matching graphs g1

and g2, given this isomorphism f , is represented by

Cf g1; g2
� �¼∑v1i AΣ1

v
cv v1i ; v

2
a

� �þ∑e1ij AΣ1
e
ce e1ij; e

2
ab

� �
ð1Þ

where f v1i
� �¼ v2a and f v1j

� �
¼ v2b . That is, the cost is defined as the

addition of the pairwise costs of matching nodes and arcs [3].
These local costs can be represented through two matrices
CvAℝþ 2

, Cv v1i ; v
2
a

� �¼ cv v1i ; v
2
a

� �
and CeAℝþ 4

, Ce v1i ; v
2
a ; v

1
j ; v

2
b

h i
¼

ce e1ij; e
2
ab

� �
and their definition depends on the application. Usual

examples are the Euclidean distance, when attributes have the
position of the node in the image or the distance between local
features such as Harris corners [7], SIFTs [8] and others [17].

There are several error-tolerant graph-matching algorithms that
return the best isomorphism f between two graphs: Probabilistic
relaxation [18], Graduated-Assignment [9], Expectation-Maximisation
[10] or Bipartite Graph Matching [19]. In fact, the input of these
algorithms can bematrices Cv and Ce instead of graphs g1 and g2 since
matrices capture all the differences between graphs and the mini-
misation cost is defined through these matrices (1). Considering that
the involved graphs have a degree of disturbance and also the
exponential complexity of the problem, these algorithms do not
return exactly the isomorphism f but a probability matrix related to
it (except [19] which directly returns the matrix labelling given that it
is not a stochastic algorithm). We represent this matrix by P where
each cell contains P v1i ; v

2
a

� �¼ Prob f v1i
� �¼ v2a

� �
. Thus, given the prob-

ability matrix P, it is necessary to derive the final labelling f by a
discretization process. There are several techniques to perform this
discretization, e.g. [20]. Fig. 2 represents the probabilistic graph-
matching paradigm.

In general, if we want to solve the error-tolerant graph-
matching problem based on probabilities [9,10] or [18], given
two graphs g1 and g2, the general objective function to optimize
corresponds to the quadratic assignment problem objective func-
tion,

CP g1; g2
� �¼ ∑

v1
i
AΣ1

v

∑
v2a AΣ2

v

∑
v1j AΣ1

v

v1j av1i

∑
v2bAΣ2

v

v2bav2a

P v1i ; v
2
a

� �
P v1j ; v

2
b

h i
Ce v1i ; v

2
a ; v

1
j ; v

2
b

h i

þ ∑
v1i AΣ1

v

∑
v2a AΣ2

v

P v1i ; v
2
a

� �
Cv v1i ; v

2
a

� � ð2Þ

where P is restricted to

∑
v1i AΣ1

v

P v1i ; v
2
a

� �¼ 1; 8v2aAΣ2
v and ∑

v2a AΣ2
v

P v1i ; v
2
a

� �¼ 1; 8v1i AΣ1
v ð3Þ

Some methods use a Gradient Ascent technique [21] or a
similar technique to get a local maximum of CP where P v1i ; v

2
a

� �
,

8v1i AΣ1
v and 8v2aAΣ2

v , are the set of variables of the function. This
technique takes steps proportional to the magnitude of the
positive gradient with the aim of approaching to a local maximum
of function CP . The magnitude of the gradient of CP respect
variable P v1i ; v

2
a

� �
is

M v1i ; v
2
a

� �¼ dCP g1; g2
� �

dP v1i ; v
2
a

� � ¼ ∑
v1j AΣ1

v

v1j av1i

∑
v2bAΣ2

v

v2bav2a

P v1j ; v
2
b

h i
Ce v1i ; v

2
a ; v

1
j ; v

2
b

h i
þCv v1i ; v

2
a

� �

ð4Þ
In Section 3, we show how the feedback of the human is used

to update matrices Cv and Ce. Besides, we present different

Fig. 1. Classical Image Correspondence Process with human interaction in the local
parts extraction and based on structural pattern recognition.

Fig. 2. Probabilistic graph matching framework (step 3 of Fig. 1).
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