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a b s t r a c t

Restricted Boltzmann machines (RBMs) are probabilistic graphical models that can be interpreted as
stochastic neural networks. They have attracted much attention as building blocks for the multi-layer
learning systems called deep belief networks, and variants and extensions of RBMs have found
application in a wide range of pattern recognition tasks. This tutorial introduces RBMs from the
viewpoint of Markov random fields, starting with the required concepts of undirected graphical models.
Different learning algorithms for RBMs, including contrastive divergence learning and parallel tempering,
are discussed. As sampling from RBMs, and therefore also most of their learning algorithms, are based on
Markov chain Monte Carlo (MCMC) methods, an introduction to Markov chains and MCMC techniques is
provided. Experiments demonstrate relevant aspects of RBM training.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the last years, models extending or borrowing concepts from
restricted Boltzmann machines (RBMs, [49]) have enjoyed much
popularity for pattern analysis and generation, with applications
including image classification, processing, and generation [25,51,
34,28,48,31]; learning movement patterns [52,53]; collaborative
filtering for movie recommendations [47]; extraction of semantic
document representations [46,17,60]; and acoustic modeling [40].
As the name implies, RBMs are a special case of general Boltzmann
machines. The latter were introduced as bidirectionally connected
networks of stochastic processing units, which can be interpreted
as neural network models [1,22]. A Boltzmann machine is a
parameterized model representing a probability distribution, and
it can be used to learn important aspects of an unknown target
distribution based on samples from this target distribution. These
samples, or observations, are referred to as the training data.
Learning or training a Boltzmann machine means adjusting its
parameters such that the probability distribution the machine
represents fits the training data as well as possible.

In general, learning a Boltzmann machine is computationally
demanding. However, the learning problem can be simplified by
imposing restrictions on the network topology, which leads us to
RBMs, the topic of this tutorial. In Boltzmann machines two types
of units can be distinguished. They have visible neurons and
potentially hidden neurons. Restricted Boltzmann machines always
have both types of units, and these can be thought of as being
arranged in two layers, see Fig. 1 for an illustration. The visible

units constitute the first layer and correspond to the components
of an observation (e.g., one visible unit for each pixel of a digital
input image). The hidden units model dependencies between the
components of observations (e.g., dependencies between the
pixels in the images) and can be viewed as non-linear feature
detectors [22]. In the RBMs network graph, each neuron is
connected to all the neurons in the other layer. However, there
are no connections between neurons in the same layer, and this
restriction gives the RBM its name.

Now, what is learning RBMs good for? After successful learning,
an RBM provides a closed-form representation of the distribution
underlying the training data. It is a generative model that allows
sampling from the learned distribution (e.g., to generate image
textures [34,28]), in particular from the marginal distributions of
interest, see right plot of Fig. 1. For example, we can fix some
visible units corresponding to a partial observation (i.e., we set the
corresponding visible variables to the observed values and treat
them as constants) and sample the remaining visible units to
complete the observation, for example, to solve an image inpaint-
ing task [28,51], see Fig. 7 in Section 7. In this way, RBMs can also
be used as classifiers: the RBM is trained to model the joint
probability distribution of inputs (explanatory variables) and the
corresponding labels (response/output variables), both repre-
sented by the visible units of the RBM. This is illustrated in the
left plot of Fig. 2. Afterwards, a new input pattern can be clamped
to the corresponding visible variables and the label can be
predicted by sampling, as shown in the right plot of Fig. 2.

Compared to the 1980s when RBMs were first introduced [49],
they can now be applied to more interesting problems due to the
increase in computational power and the development of new
learning strategies [21]. Restricted Boltzmann machines have
received a lot of attention recently after being proposed as the
building blocks for the multi-layer learning architectures called deep
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belief networks (DBNs) [25,23]. The basic idea underlying these deep
architectures is that the hidden neurons of a trained RBM represent
relevant features of the observations, and that these features can
serve as input for another RBM, see Fig. 3 for an illustration. By
stacking RBMs in this way, one can learn features from features in the
hope of arriving at a high-level representation.

It is an important property that single as well as stacked RBMs
can be reinterpreted as deterministic feed-forward neural networks.
When viewed as neural networks they are used as functions
mapping the observations to the expectations of the latent variables
in the top layer. These can be interpreted as the learned features,
which can, for example, serve as inputs for a supervised learning
system. Furthermore, the neural network corresponding to a trained
RBM or DBN can be augmented by an output layer where the
additional units represent labels (e.g., corresponding to classes) of the
observations. Then we have a standard neural network for classifica-
tion or regression that can be further trained by standard supervised
learning algorithms [43]. It has been argued that this initialization (or
unsupervised pretraining) of the feed-forward neural network
weights based on a generative model helps to overcome some of
the problems that have been observed when training multi-layer
neural networks [25].

Boltzmann machines can be regarded as probabilistic graphical
models, namely undirected graphical models also known as
Markov random fields (MRFs) [29]. The embedding into the
framework of probabilistic graphical models provides immediate
access to a wealth of theoretical results and well-developed
algorithms. Therefore, we introduce RBMs from this perspective
after providing the required background on MRFs. This approach and
the coverage of more recent learning algorithms and theoretical
results distinguishes this tutorial from others. Section 2 will provide

the introduction to MRFs and unsupervised MRF learning. Training of
RBMs (i.e., the fitting of the parameters) is usually based on gradient-
based maximization of the likelihood of the RBM parameters given

Fig. 1. Left: learning an RBM corresponds to fitting its parameters such that the distribution represented by the RBM models the distribution underlying the training data,
here handwritten digits. Right: after learning, the trained RBM can be used to generate samples from the learned distribution.

Fig. 2. Left: RBM trained on labeled data, here images of handwritten digits combined with 10 binary indicator variables, one of which is set to 1 indicating that the image shows a
particular digit while the others are set to 0. Right: the label corresponding to an input image is obtained by fixing the visible variables corresponding to the image and then
sampling the remaining visible variables corresponding to the labels from the (marginalized) joined probability distribution of images and labels modeled by the RBM.

Fig. 3. The trained RBM can be used as a feature extractor. An input pattern is
clamped to the visible neurons. The conditional probabilities of the hidden neurons
to be 1 are interpreted as a new representation of the input. This new representa-
tion can serve as input to another RBM or to a different learning system.
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