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a b s t r a c t

Coding and pooling, the major two sequential procedures in sparse coding based scene categorization
systems, have drawn much attention in recent years. Yet improvements have been made for coding or
pooling separately, this paper proposes a spatially constrained scheme for sparse coding on both steps.
Specifically, we employ the m-nearest neighbors of a local feature in the image space to improve the con-
sistency of coding. The benefit is that similar image features will be encoded with similar codewords,
which reduced the stochasticity of a conventional coding strategy. We also show that the Viola–Jones
algorithm, which is well-known in face detection, can be tailored to learning receptive fields, embedding
the spatially constrained information on the pooling step. Extensive experiments on the UIUC sport event,
15 natural scenes and the Caltech 101 database suggests that scene categorization performance of several
popular algorithms can be ubiquitously improved by incorporating the proposed two spatially
constrained sparse coding scheme.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Scene categorization system usually contains two sub-modules:
feature representation and classifier learning. Feature representa-
tion consists of three components: feature extraction, feature
coding and feature pooling. Feature extraction generates the
description of a local image patch, usually using scale-invariant
feature transform [1] (SIFT) or histogram of oriented gradient [2]
(HOG) descriptors. Feature coding results a codeword representa-
tion of the local patch based on a pre-trained dictionary. Feature
pooling is used to produce a word frequency feature vector for
the image, based on the summary statistics of encoded feature.
After the feature representation module, linear or non-linear
classifiers can be learned on the set of feature vectors.

One of the most popular feature coding scheme is the bag-of-
features [3,4] (BoF) model. First, SIFT descriptors are densely
extracted on the entire set of images. Second, K-means algorithm
is performed on the random selected SIFT descriptors to generate
the dictionary (codebook) where the cluster centers are called
codewords. The dictionary can be seen as a set of basis used to
represent the SIFT descriptors by the codeword IDs. In the BoF

model, each SIFT descriptor is assigned to and represented by the
nearest codeword. Finally, after average pooling, the histogram of
codewords occurrence frequencies can be used to represent the
image.

BoF model is expected to have less discriminant ability without
considering the spatial information of local features on the image
plane. To incorporate such information, spatial pyramid matching
[5] (SPM) divides the whole image into fixed rectangular sub-
regions and combines all the feature vectors for each region. The
success of SPM depends on two things: one is its feature represen-
tation with spatial information and the other is the pyramid match
kernel [6]. Both BoF and SPM use hard vector quantization (repre-
senting each feature using only one codeword) to generate the fea-
ture representation, which has large quantization error. To reduce
this error, sparse codes spatial pyramid matching [7] (ScSPM) is
proposed. ScSPM extends SPM in two aspects. First, instead of
using the hard vector quantization step, ScSPM uses sparse coding
instead (representing each feature using multiple codewords).
Second, it uses max pooling operation (which takes the maximum
of the sparse coding coefficients for each codeword and over the
pooling region) to replace average pooling (which takes the aver-
age value instead of the max value) used in classic BoF. In this
way, ScSPM achieved higher performance on several benchmarks.

The success of ScSPM spurred recent research on sparse coding
for image classification. Boureau et al. [8] evaluated several coding
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and pooling schemes and proposed macro-features to improve the
classification accuracy. Wang et al. [9] used the m-nearest code-
words to represent local patches (LLC), while Liu et al. [10] pro-
posed the soft assignment coding scheme (LSC) and Huang et al.
[11] enhanced codewords with salient measure to represent local
patches (SC). Besides image classification, sparse coding has also
been extensively used in other fields, for example, Yu et al. recently
proposed a sparse patch alignment approach for image clustering
[12] and used sparse coding to perform click prediction [13].
Finally, in recent years, deep learning methods have also been used
to infer deep sparse codes [14], extract image features and perform
image classification [15,16], which are related to this work in a
broad sense.

Yet improvements of sparse coding algorithms have been made
for coding or pooling separately, little work explicitly considered
modeling spatial constraints/relationships in image classification
tasks. Our proposed method specifically addressed this limitation.
In particular, we propose two new methods to model spatial rela-
tionships of codewords in the general sparse coding framework,
one in the coding step and the other in the pooling step. A preli-
minary conference version of this work [17] has addressed the
adaptive spatial pooling issue. However, here we show that by also
incorporating spatial information in the coding step results in an
even better scene classification performance.

The key contributions of this work are two-folds: First, we pro-
pose to use the m-nearest neighbors of a local feature to vote for
the sparse coding result of that feature in the image space, which
encourages similar image features to be encoded by similar code-
words. Second, we propose a boosting-based approach to adap-
tively learning receptive fields, which imposed informative
spatial constrains to the pooling step of sparse coding algorithms
for better image classification.

Other researchers have also considered improving the spatial
consistency in the coding step. For example, Gao et al. [18] used
Laplacian matrix to penalize coding inconsistency while Shabou
[19] formulated codewords selection as a labeling problem.
However, both [18,19] used complex optimization algorithms to
search for the optimal codewords. They employ complicated
mathematical formulation and are also computationally expensive.
In contrast, our method only used the m-nearest neighbors of a
local feature in the image space to vote for a spatially consistent
coding result, which is computationally faster, easier to formulate,
and has a higher flexibility.

Similarly, a large amount of existing work have also tried to add
more information (e.g., by using large codebook [20], using more
pooling regions [21], incorporating object location information
[22] and using hierarchical pooling [23]) in the pooling step to
achieve higher performance. However, high dimensional feature
representations pose significant challenges in machine learning
and computation, which are not always viable. Different from their
approaches, our boosting-based approach to receptive field learn-
ing only require a small codebook size and naturally leads to a
low dimensional feature representation, which is more efficient
in both the computation and classifier design. In particular, our
method suggests that the Viola–Jones algorithm [24], which is
well-known in face detection, can actually be tailored to learning
receptive fields for the pooling step of sparse coding algorithms.

This paper is organized as follows: In Section 2, we briefly review
the sparse coding framework for scene categorization. In Section 3,
we introduce two novel methods to incorporate spatial constrained
information into sparse coding algorithms: the spatial constrained
coding method based on codewords voting (Section 3.1) and the
spatial constrained pooling method based on the boosting
algorithm (Section 3.2). Then, we quantify the performance of the
proposed methods against existing algorithms on several bench-
marks in Section 4. Finally, we conclude this work in Section 5.

2. The sparse coding framework for scene categorization

We first review the sparse coding framework for scene catego-
rization. Denote X = {x1, x2, . . ., xN} e Rd�N be the SIFT features
extracted from image I, d the dimensionality of SIFT descriptors
(by default d = 128). B = {b1, b2, . . ., bM} e Rd�M the codebook with
M codewords, usually obtained by performing the K-means algo-
rithm on a random subset of SIFT features. In general, the codebook
is overcompleted, i.e. the size of codebook is much larger than the
dimension of feature (i.e. M� d).

The coding step is to represent a feature xp by some selected
codewords in B. The encoded vector for local feature xp is
denoted by cp e RM�1. Different coding method employs different
strategies to choose the codewords. After each local feature is
coded by the selected codewords, we obtain code matrix
C = {c1, c2, . . ., cN} e RM�N for image I. Here, we briefly introduce
the coding formulation for three popular sparse coding methods:
locality constrained linear coding [9] (LLC), soft assignment
coding [10] (LSC) and salient coding [11] (SC).

LLC is an extension of ScSPM [7], which assumes that features
lie on a lower dimensional manifold and can be approximately rep-
resented by the m-nearest codewords in B. The approximated LLC
is formulated by Eq. (1),

min
C

XN

p¼1

kxp � Bp ecpk2

s:t: 1T ecp ¼ 1; 8p

ð1Þ

where xp is a local feature, Bp ¼ fbp
1; b

p
2; . . . ; bp

mg are the m-nearest
codewords of xp; ecp is the encoded vector for local feature xp. 1 is
a column vector with all entries one so that the sum of elements
in ecp equal one, this constraint is used to solving the least-squares
problem.

In LSC, features are encoded by the m-nearest codewords of xp,
like LLC. However, LSC uses distance ratios only to determine the
coding coefficients instead of resolving the reconstruction problem
in LLC. The coding step of LSC is given in Eq. (2) below,

cpj ¼
expð�bd̂ðxp; bjÞÞXm

l¼1

expð�bd̂ðxp; blÞÞ

d̂ðxp; blÞ ¼
dðxp; blÞ; if bl 2 fbp

1; b
p
2; . . . ; bp

mg
þ1; otherwise

( ð2Þ

where cpj is the encoded value for local feature xp by codeword
bp

j ; dðxp; blÞ is the Euclidean distance between feature xp and code-
word bl.

In contrast, SC encodes the feature using a saliency function
instead of solving a linear system. It assigns more weight on the
nearest codeword that is much closer to the feature than other
codewords. The coding step of SC is given in Eq. (3),

cpj ¼
;ðkxp � bp

j k
2
= 1

m�1

Xm

s–j

kxp � bp
s k

2Þ; j ¼ argmin
s¼1;2;...;m

ðkxp � bp
s k

2Þ

þ1; otherwise

8><>:
ð3Þ

where cpj is the encoded value for local feature xp by the nearest
codeword bp

j ; ; is a monotonically decreasing function, in [11],
;ðxÞ ¼ 1� x:fbp

1; b
p
2 . . . ; bp

mg is the m-nearest codewords of xp.
After feature encoding, we obtain sparse coding coefficient

matrix C = {c1, c2, . . ., cN} e RM�N for image I, where each column
represents the sparse coefficients for encoding each feature using
the codebook. However, this matrix is too large to be practically
used by any conventional classifier. To avoid this problem, a

H. Zhang et al. / J. Vis. Commun. Image R. 28 (2015) 28–35 29



Download English Version:

https://daneshyari.com/en/article/532442

Download Persian Version:

https://daneshyari.com/article/532442

Daneshyari.com

https://daneshyari.com/en/article/532442
https://daneshyari.com/article/532442
https://daneshyari.com

