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a b s t r a c t

Sparse representation has been widely applied in many objecting tracking methods. In this paper, we
present a robust and effective object tracking approach based on the local dynamic sparse model, called
Local Dynamic Sparse Tracking (LDST). In the proposed method, the local patches of a tracked object are
linearly represented by their respective dictionary updated online, and the inter-frame correlation
between sparse representations of corresponding patches are modeled in the time domain. To further
improve its robustness, the dependency of sparse coefficients between patches in each frame is also char-
acterized by the ‘1;2 mixed norms. In addition, for each patch, different weights are exploited in calculat-
ing the likelihood probability, in order to eliminate the effect of occluded patches when updating
templates. The evaluation experiments on the challenging sequences demonstrate that the proposed
method has the better performance compared with some typical state-of-the-art methods.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Object tracking has long been an important problem in com-
puter vision field, since it plays a crucial role in many practical
applications, such as intelligent surveillance, autonomous naviga-
tion of vehicles, human–computer interaction, and action recogni-
tion. In real-world scenes, a robust object tracking algorithm must
handle some challenging factors well, e.g., partial occlusion, illumi-
nation variation, pose changes, background clutter, complex
motion and object blur. In the last decade, a lot of tracking methods
have been presented to deal with the challenges [1].

Generally, the existing object tracking methods can be catego-
rized into two categories, i.e., generative approaches [2–7] and dis-
criminative [8–10] approaches. Due to space limitation, we only
briefly review the methods which are most related to ours.
Recently, due to the success of sparse representation in face recog-
nition [11], some object tracking methods based on sparse repre-
sentation have been proposed [12–16]. For example, Mei et al.
[14,15] present the holistic appearance of the object can be repre-
sented by a series of target templates and trivial templates, and
then the object tracking can be formulated as solving the ‘1 mini-
mization problem. However, the computational cost of the ‘1 min-
imization is very high. In order to make it suitable for real scenes,
the accelerated proximal gradient algorithm (APG) [16] has been

proposed to speedup the tracking methods based on the ‘1 minimi-
zation problem. In [17], the dynamic group sparsity is introduced
into the sparse representation to enhance the robustness of the
tracker. It should be noted that these methods assume that sparse
representations of particles are independent. Ignoring the correla-
tion of sparse representations among particles makes the tracker
more prone to drift away from the target. More recently, Zhang
et al. [18]. propose an efficient multi-task sparse learning approach
for robust visual tracking, and they adopt the lp;q mixed norms to
describe the joint representation of all the particles. Further, in
order to make tracking methods based on sparse code more effi-
cient, Zhang et al. reduce the dimension of features by exploiting
compressed sensing principles [19].

To better handle the temporal variation and occlusion situa-
tions, the learning schemes with dynamic update have been
exploited by many tracking systems [14,15,18,20–22]. Different
from the template updating strategy in [14–16], Wang et al. [23]
blend the past information and the current tracking result in a
principled way by non-negative dictionary learning strategy,
which can automatically detect and reject the occlusion and yield
robust object templates. To handle the occlusion situation, Kwak
et al. [24] present an active occlusion detection and processing
algorithm by learning a general classifier with observation likeli-
hoods. Liu et al. [25] propose a tracking algorithm based on local
sparse model which employs the histograms of sparse coefficients
and the mean shift algorithm in object tracking. However, this
method is based on a static local sparse dictionary and may fail
when there are objects with similar appearance in scenes. Jia
et al. [26] propose an efficient tracking algorithm with structural
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local sparse model and adaptive template update strategy. Mean-
while, in order to alleviate the drifting problem, this method uses
the alignment pooling in the sparse representation of tracked
object. Zhong et al. [27] present a robust object tracking method
using a collaborative model, which utilizes both holistic templates
and local representations in each frame. However, these
approaches do not exploit the temporal consistency of sparse rep-
resentation of tracked objects, and the stability of target tracking
can be affected when the occlusion or appearance change occurs.

In this paper, we present a robust and effective object tracking
approach based on the local dynamic sparse model in the particle
filer framework. The highlights in this contribution are summa-
rized as follows. First, a sparse innovation term is introduced into
the objective function to characterize the inter-frame correlation
between sparse representations of corresponding patch in the time
domain. Second, we adopt the ‘1;2 mixed norm to characterize the
dependencies of sparse coefficients between patches in each frame
to enhance the robustness of the proposed method. Third, we elim-
inate the influence of occlusion patches in the update of templates,
and in calculating the likelihood probability, we give different
weights of different patches.

This paper is organized as follows. Section 2 formulate the pro-
posed local dynamic sparse tracking model in details. Then it is
evaluated and the related experimental results are reported in Sec-
tion 3. Section 4 concludes the whole work.

2. Local dynamic sparse tracking model

This section presents the proposed object tracker based on local
dynamic sparse model. First, we introduce the sparse representa-
tion of tracked objects and formulate dynamic sparse tracking
model in Section 2.1. Further, the local sparse representation based
on patches of tracked object and the corresponding local dynamic
sparse tracking model are described in details in Section 2.2. Then
we present how to exploit the Bayesian inference framework to
estimate the target states, i.e., motion parameters, in Section 2.3.
A new template update scheme is presented to reduce the influ-
ence of occlusion in Section 2.4. Finally, we introduce how to uti-
lize the Accelerated Proximal Gradient (APG) method to solve the
proposed local dynamic sparse tracking model in Section 2.5.

2.1. Sparse representation of objects

It is known that the object appearance under different environ-
ments can be approximately embedded in a low dimensional sub-
space. Here the appearance subspace can be spanned by a group of
representative images, called templates, ti 2 Rd; i ¼ 1;2; . . . ;n.
Given the image set of target templates at time
t;Tt ¼ ½t1

t ; t
2
t ; . . . ; tn

t � 2 Rd�n; d� n, A candidate particle yt 2 Rd at
time t can be approximated by the linear combination of target
templates in Tt , that is,

yt ¼ Ttxþ e; ð1Þ

where x 2 Rn denotes the column vector of target coefficients, and
column vector e 2 Rd represents the error or residual term. The
large nonzero entry in e indicates the corresponding pixel in yt is
possibly corrupted or occluded. In [14], Mei et al. adopt the trivial
templates I to capture the occlusion, so Eq. (1) can be rewritten as,

yt ¼ Tt I½ �
x
e

� �
; ð2Þ

where I is a d� d identity matrix, and here e should be sparse, since
outliers usually occupy very few pixel locations of tracked objects.
Consequently, for a candidate target yt , the sparse solution of Eq.

(2) can be obtained by solving the following ‘1-regularized least
squares problem.

min
c

1
2
jjyt � Btcjj22 þ kjjcjj1; s:t: c < 0 ð3Þ

where Bt ¼ ½Tt ; I;�I� 2 Rd�ðnþ2dÞ; c ¼ ½xT ; eT
þ;�eT

��
T , and c < 0 means

each entry in c is nonnegative. Since the dimension of matrix Bt is
generally very large, solving the Eq. (3) needs very high time cost.
To handle this problem, motivated by handling the sparse outliers
term in [28], we model the error vector e in formula (1) as the addi-
tion of two independent random vectors, i.e., the Gaussian noise
vector n and the Laplacian noise vector s. Thereby, we have

yt ¼ Ttxt þ nt þ st; ð4Þ

where the Gaussian component models small dense noise and the
Laplacian one aims to handle outliers.1 Correspondingly, we can
optimize the following objective function to obtain the sparse repre-
sentation for a candidate target yt ,

min
xt ;st

1
2
jjyt � Ttxt � stjj22 þ kjjxtjj1 þ cjjst jj1; ð5Þ

where k and c are the penalty parameters of coefficient sparsity and
the abnormal error respectively.

The aforementioned methods assume that the sparse represen-
tation of the tracked target is irrelevant between consecutive
frames [14–16,13]. In practice, the tracked target varies very small
between consecutive frames, so its inter-frame coefficients have
strong relevance. In our model, this prior can be used to overcome
the drifting problem due to some significant changes, e.g., illumi-
nation change. The inter-frame change of sparse coefficient repre-
sentations of tracked objects can be regarded as a dynamic system.
Thereby, we model the dependency of sparse representation coef-
ficients of a tracked target at time t and t � 1 as

xt ¼ Ftxt�1 þ e ð6Þ

where Ft denotes the state transition matrix from time t � 1 to time
t; e denotes the prediction error or residue.

To solve the dynamic system defined by Eqs. (4) and (6), Inspired
by Adam et al.’s work in [30], we introduce the innovation sparse
term into the optimization problem defined by Eq. (5) and have

min
xt ;st

1
2
jjyt � Ttxt � stjj22 þ kjjxtjj1 þ cjjst jj1 þ njjxt � Ftxt�1jj1; ð7Þ

where k; c and n are the controlling factors of sparsity.

2.2. Local dynamic sparse representation of tracked objects

The tracked object is also represented by a set of patches in our
system. For each target candidate yt 2 Rd at time t, it is divided into
N non-overlapped patches, and each of them is represented as a
vector pj 2 Rd=N; j ¼ 1;2; . . . ;N, which is normalized by ‘2 norm.
In order to calculate the sparse representation of each patch pj,
we need to construct the corresponding dictionary Dj respectively.

For each dictionary Dj 2 Rd=N�n; j ¼ 1;2; . . . ;N, it is made up of the

corresponding patch di
j 2 Rd=N of each target template ti 2 Rd, each

of which is obtained by using non-overlapped sliding windows on
each target template. Furthermore, we apply the formulation of Eq.
(7) to each patch pt;j at time t, and have

min
xt;j ;st;j

1
2
jjpt;j � Dt;jxt;j � st;jjj22 þ kjjxt;jjj1 þ cjjst;jjj1 þ njjxt;j � Ftxt�1;jjj1;

ð8Þ

1 The similar ideas of decomposing the noise into two components (e.g. decom-
posing the noise into sparse and non-sparse [13,29] for achieving robust motion
estimation) have appeared in computer vision community.
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