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a b s t r a c t

This paper addresses the problem of the lossless and near-lossless compression of hyperspectral images
and presents two efficient algorithms based on distributed source coding, which perform the lossless
compression by means of multilevel scalar codes. The proposed algorithms are implemented on
the co-located blocks in the spectral orientation. A novel multiband spectral predictor is proposed to
construct the side information of each block. The back-up side information is introduced for the second
algorithm to recover the images when the original side information is corrupted by errors. The encoder
only requires the transmission of the least significant bit (LSB) bit-planes to the decoder, and the number
of bits is computed by the maximum error between the block and its side information. The proposed
algorithms are also extended to near-lossless compression. The experimental results show that the
proposed algorithms have a competitive compression performance with the existing distributed
compression algorithms. Moreover, the proposed algorithms can provide low complexity and different
degrees of error resilience, which is suitable for onboard compression.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Hyperspectral imaging is an important technique in the field of
remote sensing that is characterized by high resolutions in the
spectral dimension. With the increase of spectral and spatial
resolutions, the availability and dimensionality of hyperspectral
images is continuously increasing. This demands an efficient com-
pression technique that can be used to compress the hyperspectral
images and to reduce the data size as much as possible. Image
compression techniques can be employed to solve this problem,
allowing the transmission of more data in the same amount of
time. Several types of compression methods are available. In
lossless compression, the reconstructed image is identical to the
original. In near-lossless compression, the maximum absolute dif-
ference between the reconstructed image and the original image
does not exceed a defined peak value. For lossy compression given
a target bit-rate, the reconstructed image is as similar as possible
to the original image in the mean-squared error sense. Lossy
compression may provide a high compression degree. However,
the incurred distortion can greatly affect the performance of
the practical application for hyperspectral images. Although the

compression degree of lossless compression is limited, it can pre-
serve all of the information perfectly. Near-lossless compression
reduces the bit-rate by introducing a limited peak error to preserve
the quality of images. At present, lossless and near-lossless
compression have received more attention for the onboard com-
pression of hyperspectral images.

In general, the satellite or spacecraft-based platforms have
limited capacity for storage memory and computational resources.
As a result, these systems usually employ a simple technique to per-
form hyperspectral images compression [1]. While compression is
becoming more and more important for onboard processing, it
should be noted that the pursuit of high compression performance
should not be the only purpose. Because the onboard dataset
requires transmission to the ground, the compression algorithms
should be error resilient because of the bad channel environment.
In practice, near-lossless compression is typically implemented by
employing a quantizer followed by lossless compression. As a
matter of fact, the prediction-based lossless compression can be
extended to near-lossless compression combined with a quantation
operation. The existing lossless compression algorithms are gener-
ally designed using linear prediction, transform or vector quantiza-
tion, where the prediction-based technique is widely used to
perform the lossless and near-lossless compression, while the
transform-based technique is mainly used for lossy compression.
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Because of the high complexity, the vector quantation-based tech-
nique is scarcely used. As we know, both the JPEG-LS [2] and the
context-based adaptive lossless image coding (CALIC [3])
algorithms are well-known compression standards that perform
two-dimensional lossless compression. Note that the CALIC algo-
rithm has also been extended to the three-dimensional CALIC (3D
CALIC) algorithm to perform the lossless compression of multispec-
tral images [4], where the extension consists of a fairly simple
spectral predictor that uses one previous band to predict the cur-
rent band. In [5], Magli E used the 3D CALIC algorithm to perform
near-lossless compression on hyperspectral images. Moreover,
Magli E proposed an optimized onboard near-lossless compression
of the hyperspectral data using the CALIC algorithm referred to as
M-CALIC, which has been proposed for onboard compression. The
M-CALIC algorithm uses a more efficient spectral predictor than
that of the 3D CALIC algorithm followed by the CALIC algorithm
for spatial compression. Rizzo F proposed a low complexity algo-
rithm for hyperspectral image compression that uses linear predic-
tion in the spectral domain, which is suitable for onboard
implementation because of the limited hardware and low power
consumption [6]. Rizzo F also proposed a spectral-oriented least
square (SLSQ) algorithm that uses two prediction modes: intra-
band prediction and inter-band prediction for hyperspectral
images, which achieves a competitive performance at a lower
complexity [6]. Note that an excellent lossless compression perfor-
mance is achieved by using the class-based inter-band prediction,
which is reported in [7,8]. Although these algorithms provide a sat-
isfying compression performance, they still have a significantly
high complexity and no error resilience in terms of the constraint
of onboard compression, even if these algorithms are extended to
near-lossless compression. In recent years, a new method to encode
statistically dependent sources called distributed source coding
(DSC) has received more and more attention because it can provide
both low complexity and error resilience, thus satisfying the
requirement of onboard compression systems [9–11]. DSC was
originally designed for lossless compression using the basis of the
Slepian–Wolf theory [12]. Magli E proposed a scalar-DSC (s-DSC)
using multilevel coset codes [13]. Based on s-DSC, Andrea A pro-
posed three DSC-based lossless compression algorithms that pro-
vide both low complexity and error resilience [14]. Compared
with the traditional compression algorithm, the performance of
the existing DSC-based compression is not satisfying because it is
less sufficient than the correlation model when it is subjected to
the complexity constraints. However, the resulting DSC-based com-
pression algorithms have been proposed for lossless compression,
whereas they have not yet been tested in the near-lossless case.
In this paper, we proposed efficient DSC-based lossless and near-
lossless compression algorithms for hyperspectral images by using
multilevel scalar codes, which have a competitive compression
performance compared with the existing DSC-based algorithms.
Furthermore, the proposed algorithms provide both low complex-
ity and different degrees of error resilience, which is suitable for
the onboard compression of hyperspectral images.

This paper is organized as follows. In Section 2, we describe the
first proposed DSC-based algorithm for the lossless compression of
hyperspectral images. In Section 3, we describe the second pro-
posed DSC-based algorithm. In Section 4, the proposed algorithms
are extended to near-lossless compression. The performance eval-
uation of the proposed algorithms is reported in Section 5. Finally,
conclusions are drawn in Section 6.

2. M-DSC1 algorithm

In the DSC scenario, two (or more) statistically dependent data
sources must be encoded by separate encoders that are not

allowed to talk to each other. Lossless compression is performed
on each source separately and may be less efficient than the joint
encoding of all sources. However, the DSC theory proves that under
certain assumptions, the effect of separate encoding is equivalent
to that of joint encoding, while the sources are decoded jointly
[12]. In practice, the DSC theory can be typically carried out by
using binary error-correcting codes or multilevel scalar codes
[15–17]. Binary error-correcting codes mainly include Turbo, LDPC,
Trellis or other powerful binary channel codes, while multilevel
scalar codes are mainly the (n, k) linear grouping codes. It should
be noted that the performance of the binary error-correcting codes
is worse than that of the multilevel scalar codes because they
neglect the correlations between the bit-planes. Therefore, the
proposed algorithms employ the (n, k) linear grouping codes to
perform distributed lossless compression. Suppose the original
source is represented by n bits. Then, the (n, k) linear grouping
codes partition the set of 2n values into 2r cosets with 2k elements
in each coset, where r = n � k. The Euclidian distance between the
adjacent two elements in every coset is 2r. Note that each pixel
must belong to one of the cosets, and the two arbitrary cosets have
no common element. When compared with the traditional algo-
rithm, the DSC encoder only needs to transmit the label of the coset
to which each pixel belongs instead of the prediction errors to the
decoder. At the decoder, the pixel is reconstructed in the coset, is
indexed by the received coset label and is combined with its side
information.

2.1. Construction of the side information

For the DSC encoder, the quality of the side information can sig-
nificantly influence the compression performance. It is expected
that the side information should be as close as possible to the pixel
being encoded, which allows the use of the smallest number of bits
for the coset label while achieving perfect reconstruction. In gen-
eral, we can directly select the previously adjacent band as the side
information of the current band. However, it is not an effective
band for the hyperspectral images. As we known, the spectral cor-
relation of the hyperspectral images is fairly high so that the cur-
rent band is typically correlated with a few previous bands. This
correlation should be better explored to achieve a high compres-
sion performance. To take advantage of the local characteristics
of the hyperspectral images, each band is partitioned into non-
overlapping blocks of size N � N. Let xk,i,j denote the pixel of the
current block in the i-th line, j-th pixel, and k-th band with k = 1,
2, . . . ,L and i, j = 1, 2, . . . ,N. The side information of the current pixel
xk,i,j is constructed linearly from the decoded pixels of the co-
located blocks in the previous P bands. The side information of
the current block can be expressed as

�xk;i;j ¼
XP

l¼1

alðxk�l;i;j � lk�lÞ þ lk; i; j ¼ 1;2; . . . ;N ð1Þ

where lk is the average value of the block in the k-th band and
ak = [a1, a2, . . . ,aP] are the prediction coefficients. Note that the pre-
diction coefficients are computed by minimizing the energy of the
prediction errors of the current block, which can be written as

ðGak � HÞTðGak � HÞ ð2Þ

where

G ¼

xk�1;1;1 � lk�1 xk�p;1;1 � lk�p

..

. ..
.

xk�1;N;N � lk�1 xk�p;N;N � lk�p

2
664

3
775 H ¼

xk;1;1 � lk

..

.

xk;N;N � lk

2
664

3
775 ð3Þ

The optimal prediction coefficients are calculated over the block
by the least-square estimator as follows
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