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Graph matching is a fundamental problem in computer vision area. Graph matching problem that in-
corporates pair-wise constraints can be formulated as an integer quadratic programming (IQP) problem
with affine mapping constraint. Since it is known to be NP-hard, approximate relaxation methods are
usually required to find approximate solutions. In this paper, we present a new effective graph matching
relaxation method, called Lagrangian relaxation graph matching (LRGM), which aims to generate a re-
laxation model by incorporating the affine mapping constraint into the matching objective optimization.
There are three main benefits of the proposed LRGM method: (1) The nonnegative affine mapping
constraint encoding one-to-one mapping is naturally incorporated in LRGM relaxation via Lagrangian
regularization. (2) By further adding a #;-norm constraint, LRGM can generate a sparse solution em-
pirically and thus returns a desired discrete solution for original IQP matching problem. (3) An effective
update algorithm is derived to solve the proposed LRGM model. Theoretically, the converged solution can
be proven to be Karush-Kuhn-Tucker (KKT) optimal. Experimental results on both synthetic data and

real-world image datasets show the effectiveness and benefits of the proposed LRGM method.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Many problems in computer vision in pattern recognition area
can be solved by graph matching methods [1-7]. Graph matching
problem that incorporates pairwise constraints can be formulated
as an integer quadratic programming (IQP) problem with affine
mapping constraint encoding one-to-one mapping constraint. The
optimal solution of IQP matching problem should satisfy both
discrete and affine mapping constraints simultaneously. Since it is
known to be NP-hard, relaxation methods are usually required to
find approximate solutions for this problem [8,6,9-12]. One kind of
popular relaxation methods is to first develop a new continuous
problem by relaxing the discrete mapping constraint and then aim
to find the optimum for this relaxed continuous problem. Since the
optimum of the relaxed matching problem is usually continuous,
thus a post-optimization step (discretization step) is further re-
quired to obtain the final discrete (binary) mapping solution [9—
11,13]. One main limitation is that the required post-optimization
step is generally independent of the matching objective optimi-
zation and thus may lead to weak local optimum for original IQP
matching problem. Another kind of relaxation method is to try to
optimize IQP matching problem in a discrete domain [14]. This
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method can generate a solution obeying the discrete affine map-
ping constraint strictly for original IQP matching problem, and
thus does not require any post-optimization step in the optimi-
zation process [14]. However, the optimality of this discrete
method is usually limited. Zhou and la Torre [12] proposed an
effective graph matching method which first exploited the fac-
torized properties of the affinity matrix and then optimized the
factorized graph matching problem using a path-following algo-
rithm [15]. This method is usually time consuming because it
needs to solve a series of sub-problems. From the game-theoretical
perspective, Albarelli et al. [16,17] have proposed a new relaxation
model which aims to optimize the matching problem in a simplex
domain, i.e., #;-norm constraint in nonnegative domain. For con-
venience, we call it as GameM in the following. Due to the #;-
norm constraint, GameM can induce a sparse (approximate dis-
crete) solution for the matching problem [17]. One drawback is
that the mapping constraint encoding one-to-one mapping has
been entirely ignored in GameM. Also, the sparsity of GameM
solution is usually uncontrollable to obtain the desired discrete
solution [17,18]. In addition to optimization-based methods,
probabilistic methods can also be used for solving matching pro-
blems [8,3].

In this paper, a new graph matching method has been pro-
posed. The main contributions are twofold: First, a new relaxation
model, called Lagrangian relaxation graph matching (LRGM), has
been proposed for solving IQP matching problem. LRGM has two
aspects: (1) the affine mapping constraint is explicitly
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incorporated in LRGM relaxation via Lagrangian regularization.
(2) By imposing #;-norm constraint on related solution, empiri-
cally LRGM can also lead to a sparse solution and thus maintains
the discrete constraint strongly. Thus, LRGM provides a tight re-
laxation intuitively for original IQP problem by incorporating both
affine mapping and discrete binary constraint simultaneously.
Second, an effective multiplicative optimization algorithm has
been proposed to solve LRGM model. The convergence of the al-
gorithm is guaranteed. Another important property of this algo-
rithm is that it leads to an optimal solution which can satisfy the
Karush-Kuhn-Tucker (KKT) optimal condition.

The remainder of this paper is organized as follows. In Section
2, we introduce the general formulation of graph matching pro-
blem as an integer quadratic programming problem. In Section 3,
we briefly review some related works. In Section 4, we propose
our LRGM model and develop a multiplicative update algorithm to
solve it. Some benefits of the proposed LRGM method are de-
monstrated in Section 5. At last, we apply LRGM method to some
matching tasks.

2. Problem formulation

Assume that two attributed graphs to be matched are
GP = (VP, EP, AP, RPy and GM = (VM, EM, AM, RM) where V represents a
set of nodes, E, edges, and A, unary attributes, R, binary relations. Each
node vP e VP or edge ef € EP has an associated attribute vector
aP e AP or r2 e RP. For example, in image feature matching task, the
attribute vector aP can be used to represent some feature descriptors,
such as SIFT descriptor and color histogram, and binary relation rZ
usually refers to the pairwise relationship between features, such as
distance. The aim of graph matching problem is to determine the
correct correspondences between VP and VM. A correspondence
mapping is a set of pairs (or assignments) (v, vj’-"’ ). For each assign-
ment pair (v°, v}") and (v¢, v), there is an affinity W;;,; = f (i, )
that measures how compatible the nodes (v?, v?) in graph G are with
the nodes (v, vM) in graph GM. Thus, we can use a matrix W in which
the non-diagonal element Wj;,, contains a pair-wise affinity between

two assignments (v, v}) and (v¢, v, and the diagonal term Wj;;
represents an unary affinity of correspondence (vP, vM). The corre-
spondences between two graphs can be represented by a permutation
matrix X, X € R™"(m = VP, n = V™)), where X; =1 implies that
node v7 in G corresponds to node v} in GV, and X;; = 0 otherwise. In
this paper, we denote x € {0, 1)™ as a row-wise vectorized replica of
X, ie, x =vecX) = X;1... Xy --or Xj1o.- Xin)' - In the following, X is
called as the matrix form of x, i.e, X = mat(x), and x is called as the
vector form of X i.e, x = vec(X). The graph matching problem, in its
most recent and general form, can be formulated as an integer
quadratic programming (IQP) problem, i.e., finding the indicator vector
X that maximizes the following score function [14,8,9,19],

max Z Z ‘Nij,klxijxkl = x'Wx
x o )

s.t. Ax=b,x;e{0,1}. )

where A € RM™™*M apnd b e R™*+™*! are set to encode the doubly
stochastic constraint, i.e.,

A”_{l if i, j € S,JS,
v 0 otherwise

where S, = {i,jlismni-D+1<j<nxi}and S, = (i,jlm<i<m+n,
jel{i-mi-m+n,i—-m+@n-"1n}}.b=(,1, -1 € MM,

The affine constraint Ax = b' ensures one-to-one mapping constraint
between VP and VM [8,19], which is mostly concerned in many
matching tasks [8,19,12,14].

3. Related works

It is known that the above IQP matching problem is NP-hard,
thus approximate relaxations are usually required. Here, we briefly
review some popular models that are closely related to our work.

Spectral matching (SM): By relaxing both integer and affine
mapping constraint, Leordeanu and Hebert [10] proposed a re-
laxed problem as follows:

max X'Wx
X

s.t. Ix|hb=1, 3

where || x |, = (X;x)'%. SM has a closed-form solution which is
the leading eigenvector of the affinity matrix W. However, the
matching constraints involving both discrete constraint x; € {0, 1}
and affine constraint Ax = b are ignored in this relaxed model.
Therefore, the optimal solution of SM model is continuous and
should be further discretized to obtain the final discrete mapping
solution.

Spectral matching with affine constraints (SMAC): By further
adding the affine mapping constraint to SM relaxation, Cour et al.
[9] proposed a relaxation as follows:

max XWx
X

s.t. Ax=b, |x]|,=1. 4)

Comparing with SM, SMAC provides a tighter relaxation and also
has a closed-form solution. However, similar to SM, the discrete
constraint Xx; € {0, 1} is also dropped in SMAC and thus should be
further discretized to obtain the final discrete solution.

Game-theoretic matching (GameM): From game-theoretic per-
spective, Albarelli et al. [17] have proposed a relaxed matching
model by replacing the #, norm constraint in SM with #; norm,
ie.,

max XWx
X

st IXlh=1, %20 5)

where || X |l; = ¥;1XJ. Comparing with SM (Eq. (3)), one important
feature of GameM is that it can generate a sparse solution for the
matching problem due to #; norm constraint, and thus in-
corporates the desirable discrete binary constraint approximately
in optimization. However, one drawback is that the affine
matching constraint encoding one-to-one mapping is entirely ig-
nored in GameM.

Our aim in this paper is to propose a new relaxation for the IQP
matching problem (Eq. (1)). We call it as Lagrangian relaxation
graph matching (LRGM). The main benefit of LRGM is that it in-
tegrates both affine and discrete mapping constraints of IQP
matching problem (Eq. (1)) in relaxation process and thus in-
tegrates the benefits of SMAC and GameM simultaneously.

1 Generally, Ax < b is used for graphs with different sizes. Here, we focus on
equal-size graph matching problem. For the graphs with different sizes, one can
transform them to the same size by adding some dummy isolated nodes into the
smaller graph [12,15].
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