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a b s t r a c t

Among the challenges faced by current active shape or appearance models, facial-feature localization in
the wild, with occlusion in a novel face image, i.e. in a generic environment, is regarded as one of the
most difficult computer-vision tasks. In this paper, we propose an Active Appearance Model (AAM) to
tackle the problem of generic environment. Firstly, a fast face-model initialization scheme is proposed,
based on the idea that the local appearance of feature points can be accurately approximated with
locality constraints. Nearest neighbors, which have similar poses and textures to a test face, are retrieved
from a training set for constructing the initial face model. To further improve the fitting of the initial
model to the test face, an orthogonal CCA (oCCA) is employed to increase the correlation between shape
features and appearance features represented by Principal Component Analysis (PCA). With these two
contributions, we propose a novel AAM, namely the shape-appearance-correlated AAM (SAC-AAM), and
the optimization is solved by using the recently proposed fast simultaneous inverse compositional (Fast-
SIC) algorithm. Experiment results demonstrate a 5–10% improvement on controlled and semi-controlled
datasets, and with around 10% improvement on wild face datasets in terms of fitting accuracy compared
to other state-of-the-art AAM models.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Facial-feature detection and localization is a crucial process for
various applications such as facial-expression recognition, face
animation, 3D face reconstruction, etc. Among all competitive
techniques, model-based algorithms have been proven to be most
effective in automatic facial-information learning. The earliest
work of such algorithms includes the deformable template [1] and
the active contour model [2]. These approaches aim to extract
facial features and locate face boundaries by studying feature
points individually, and hence have limited robustness and accu-
racy. Most recently, more efficient methods, including the Active
Shape Model (ASM) [3] and the Active Appearance Model (AAM)
[4], have been proposed. ASM considers the facial-shape infor-
mation (based on manually annotated facial-feature points) from a
holistic perspective, while AAM also includes texture information
(usually in terms of the pixel intensities within a face region). Due
to these models' efficiency and accuracy, many variant ASM and
AAM methods have been proposed in the past few decades, and
they improve the localization performance. However, both ASM

and AAM have problems in three different aspects, namely,
insufficient robustness to variations, sensitivity to face-model
initialization, and poor performance in generic situations. In the
following, the challenges in these three aspects and those existing
methods, which address these challenges, are discussed.

1.1. Insufficient robustness to variations. Since both ASM and
AAM rely on global parametric models, they can work well for
faces available in a training set with small variations in illumina-
tion, pose and expression. However, when these variations
become greater, their performances usually degrade dramatically.
One way to solve this problem is to integrate ASM and AAM [5,6]
In [5] a texture-constrained shape model was used to prevent the
local-minima problem, and it can achieve a robust performance
under illumination variations. In [6], the profile-search step in
ASM is changed into a gradient-based optimization problem to
more accurately localize feature points. Recently, improved ASM
models using 2-D profiles were proposed to achieve pose-adaptive
localization [7–9] It has been proven that the 2-D profiles can
capture more information around each landmark than the original
1-D profiles. By properly setting the initial face model and using an
optimization method, these methods can achieve accurate results,
and thus have become popular model-based localization methods.

1.2. Sensitivity to initialization. In the process of refining the
feature-point locations, both ASM and AAM usually perform
gradient-descent optimization over a whole face, so their
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performances are sensitive to the initial face model. This issue has
drawn much attention, and can be improved in two major steps,
namely, constructing a more representative initial face model and
using a robust feature-point refining scheme. For the first step,
several frameworks [10–12] reformulate the original AAM as a
sparse representation problem [13] and approximate the local
appearance of feature points with locality constraints. After the
shape and appearance priors are learned, the K nearest neighbors
with similar patterns to the test face in terms of pose, expression,
etc. are searched from a training set, and are used to model the
face in a locally linear sub-space. It has been shown that this pre-
processing step helps to reach faster convergence and to obtain
better fitting results. Similarly, [9,14] pre-define the number of
face clusters and classify the test face into one of the clusters based
on a statistical analysis. For the second step, in order to refine the
face model, a stacking strategy is usually employed to search, in
series, for a better location for each feature point in the face model
iteratively [7,15,16].

1.3. Poor performance in generic situations. In the survey work of
[17], statistical evaluation has shown that person-specific active
models (i.e. images of a query also exist in the training set) are
both easier to build and more robust to fitting than generic ones
(i.e. no images of a query in the training set). To solve the gen-
eralization problem, frameworks [18,19] based on AAM were
proposed to learn a discriminative fitting function and establish a
mapping between the facial appearance and the face shape in
order to improve the alignment accuracy. Unlike AAMs – which
model a whole facial region – the family of Constrained Local
Models (CLMs) [20–22] extracts templates around each landmark
and matches them to new instances of an object using a shape-
constrained search and iterative template generation. This process
always relies on the response surfaces generated by fitting the
current feature templates using normalized correlation at each
point. Recently, an approach which can handle unseen faces and
variations was proposed, and is known as the Active Orientation
Model (AOM) [23] It establishes a generative deformable appear-
ance model based on the principal components of images’ gradient
orientations, and it uses the project-out inverse compositional
algorithm to optimize the results. An improved AAM model [24]
using more efficient optimization algorithms was also proposed
for generic situations.

As discussed in some survey papers [25–27] AAMs take
advantage of all gray-level information across faces to build a
convincing model with a relatively small number of landmarks,
while ASM is just a special case of AAM. Therefore, in this paper,
we focus on establishing a shape-appearance-correlated AAM
(SAC-AAM) framework to tackle the above-mentioned three
challenges at the same time, especially under a generic localization
environment.

The contributions of this paper are given as follows. In order to
fulfill the goals, we first propose a fast initialization scheme, which
retrieves the most similar faces to a test face in terms of both poses
and textures. Based on the idea of locality constraint, these nearest
neighbors form a locally linear subspace. Then, the shape and
appearance of the selected images are analyzed, and their corre-
lation is maximized by applying Canonical Correlation Analysis
(CCA) [28] (actually, the orthogonal CCA (oCCA) [29] is employed
in our framework due to its superior data reconstruction prop-
erty). We will show that our approach can increase the correlation
between the principal components learned for face appearances
and shapes, as well as the respective projection coefficients. This
can improve the convergence speed and the fitting accuracy, while
almost no additional computational cost will be added. By con-
ducting experiments on different face datasets and comparing our
proposed framework with state-of-the-art model-based methods,
experimental results show that our framework can achieve a great

improvement in terms of fitting accuracy, especially for faces
under large pose, expression, and occlusion variations, as well as
for unseen faces.

The remainder of the paper is organized as follows. In Section 2,
we briefly introduce the well-known AAM model and some of its
latest improved models. The Canonical Correlation model and its
orthogonal variant are also discussed there. In Section 3, our shape-
appearance-correlated AAM (SAC-AAM) framework is presented, and
the details of generating initial face models and obtaining more cor-
related principal components are described. Experimental results and
analysis are given in Section 4. The conclusion is outlined in Section 5.

2. Related work

In this section, we will give a brief overview of the Active
Appearance Model (AAM) and its latest variants. We will also
introduce the concept of Canonical Correlation Analysis (CCA) and
its extension to orthogonal CCA, together with its efficiency for
various applications.

2.1. Active appearance model

As mentioned in the previous section, unlike ASM – which only
deals with shape information – AAM also takes texture informa-
tion into consideration. The shape vector is usually presented by
concatenating the position coordinates of labeled landmarks,
while texture is modeled in terms of the demeaned pixel inten-
sities or colors within the convex hull of a facial shape. When
given a training set of face images with corresponding labeled
landmarks, the shape model is established from 2N fiducial points
denoted as s¼ ðx1; y1; x2; y2; :::; xN ; yNÞT. The shapes are normalized
by using the Procrustes analysis [30], which is a commonly used
method to align shapes to a common coordinate system (usually,
the mean shape of the training objects). Then, the principal com-
ponent analysis (PCA) is applied to project the normalized and
aligned shapes onto the shape subspace. Thus, the shape instance s
can be presented as a linear combination of principal shapes as
follows:

ŝ¼ sþPs Uα; and ð1Þ

α¼ PT
s ðs�sÞ; ð2Þ

where s is the mean shape, Ps is the matrix whose columns form a
set of orthonormal base vectors, and the weight vector α (also
known as projection parameters) is used to control the shape
variations.

The appearance model of a face image I is learned by first
warping it into a “shape-free” model, usually the mean shape s.
This is represented as a warping function Wðx;αÞ, where x denotes
a set of pixels inside the mean shape s. Then, PCA is again applied
to project the “shape-free” appearance of the image IðWðx;αÞÞ on
to the appearance subspace. The appearance instance r can be
represented as a linear combination of principal appearances as
follows:

r̂¼ rþPr Uβ; and ð3Þ

β¼ PT
r ðr�rÞ; ð4Þ
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