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a b s t r a c t

We consider misaligned functional data, where data registration is necessary for proper statistical analysis.
This paper proposes to treat misalignment as a nonlinear random effect, which makes simultaneous
likelihood inference for horizontal and vertical effects possible. By simultaneously fitting the model and
registering data, the proposed method estimates parameters and predicts random effects more precisely
than conventional methods that register data in preprocessing. The ability of the model to estimate both
hyperparameters and predict horizontal and vertical effects are illustrated on both simulated and real data.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The current standard practice of analyzing functional data in a
number of sequential steps is problematic. Analyses are often car-
ried out by performing one or more independent preprocessing
steps prior to the final statistical analysis (Ramsay and Silverman,
2005). Typical examples are data registration, pre-smoothing, and
dimensionality reduction. Such preprocessing steps can cause
problems since the final analysis does not take the resulting data
modifications (and their related uncertainty) into account. In the
worst case this may invalidate the conclusions of the final analysis.

This paper considers misaligned functional data, where proper
registration is key to analyzing the data. Treating data registration
as a preprocessing step can cause problems. In particular, noisy
observations can skew registration results such that noise rather
than signal is aligned. Since this type of overfitting happens prior
to the statistical analysis, it will lead to both wrongly predicted
warps and underestimation of the noise variance. To deal with
these issues we propose to simultaneously do likelihood-based
smoothing and data registration in a general class of nonlinear
functional mixed-effects models. By computing both registration
and smoothing at the same time, we will get the optimal registra-
tion given the prediction of the functional mixed-effects and vice
versa.

The mixed effects are assumed to be observations of Gaussian
processes, and the resulting calculations are carried out by itera-
tively linearizing the model and estimating parameters from the
resulting likelihood function. In addition to allowing estimation
of the optimal combination of smoothing and registration, all
parameters can be estimated by maximum-likelihood estimation.
This contrasts most previous works on simultaneous smoothing
and registration (see e.g. Lord et al. (2007) and Kneip and Ramsay
(2008)) where parameters have to be adjusted (semi-)manually.
Some notable exceptions are Rønn (2001); Gervini and Gasser
(2005); and Rønn and Skovgaard (2009) who presents methods
for doing full likelihood inference for time-transformed curves,
and Allassonnière et al. (2007) who derive a rigorous Bayesian
framework for estimating data deformation and related parame-
ters. In contrast to the mentioned works, the model we present
seeks to align fixed effects, but allows for serially correlated effects
that cannot be matched across functional samples. Since much
functional data contains serially correlated noise, e.g. from the
measuring device or individual sample differences, a model that
allows the separation of such amplitude variations from the phase
variation is a considerable step forward.

It is worth noting the differences with pair-wise data registra-
tion as is often employed in for example medical imaging. Instead
of the common approach of choosing parameters of the registra-
tion model either by heuristic arguments or by cross-validation,
incorporating the entire dataset or population in the analysis
allows parameters to be estimated by maximum-likelihood
inference. In addition, instead of searching for a similarity measure
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that is invariant to certain types of serially correlated effects, e.g.
mutual information (Viola and Wells, 1995), the explicit modeling
of the serially correlated effects removes the need for invariance in
the similarity measure.

The proposed methods are illustrated and compared to conven-
tional preprocessing alignment on simulated dataset, and a general
model for alignment is proposed and evaluated on four real
datasets.

2. Motivation and preliminaries

Two of the major challenges when analyzing functional data are
modeling of individual sample effects and aligning of functional
samples. Fig. 1 illustrates these effects on their own, and in combi-
nation, on a one-dimensional functional dataset.

In order to handle individual variation (corresponding to the
situation in Fig. 1(a)), one can consider a linear functional mixed-
effects model where the kth observation point of functional sample
i from the dataset y is assumed to be generated as follows

yiðtkÞ ¼ hðtkÞ þ xiðtkÞ þ eik; ð1Þ

where h is a fixed effect, xi is a zero-mean Gaussian process with
covariance function r2S, and eik is independent identically distrib-
uted Gaussian noise with variance r2. Inference in this class of mod-
els has been considered in numerous works (Guo, 2002).

In contrast to the vertical variation due to individual sample
differences one may encounter horizontal variation due to
non-aligned samples (Fig. 1(b)). To align samples, one wishes to
estimate so-called warping functions v that model the horizontal
variation. Similarly to the vertical variation, one may consider
the following functional mixed-effects model for this setup

yiðtkÞ ¼ hðvðtk;wiÞÞ þ eik; ð2Þ

where h and eik are as in (1), and v is a warping function depending
on wi that is a vector of Gaussian parameters with covariance ma-
trix C0. This model can be considered a nonlinear mixed-effects
model, and many known registration algorithms can be thought
of as methods for predicting the warping parameters in the model
(2), with a known fixed effect h.

The model (2) has been considered in a statistical setting by
Rønn (2001); Gervini and Gasser (2005); and Rønn and Skovgaard
(2009), who all consider the problem in a nonparametric maxi-
mum likelihood setting. An alternative view is taken in shape anal-
ysis, where the interest is on the common shape h, while the
warping functions are considered nuisance parameters, and data
is generally considered free of observation noise. From this view-
point Kurtek et al. (2011) and Srivastava et al. (2011) have recently
proposed an estimation procedure for h based on the Fisher–Rao
metric, that is invariant to diffeomorphic data warping. The mean
shape is subsequently used for estimating the warping functions

and aligning data. This approach produces state-of-the-art results
on numerous examples, but is not generally applicable to all types
of data, since the invariance to diffeomorphic warping may lead to
overfitting when significant noise is present.

In practice, data often exhibit both vertical and horizontal var-
iation. Fig. 1(c) shows alignment variations of the fixed effect with
added serially correlated effects, i.e. a combination of the models
(1) and (2)

yiðtkÞ ¼ hðvðtk;wiÞÞ þ xiðtkÞ þ eik: ð3Þ

This type of model describe the fixed effect as a deformation of h
and allows a serially correlated effect xi that follows the coordinate
system of the observation. For some examples, it may be natural to
consider the correlated effects xi in the coordinate system of the
fixed effect h. That model will not be considered here, but inference
may be done completely analogous to the procedure described for
model (3).

Data modeling following the lines of model (3) have received
little attention. One notable exception is the paper by Bigot and
Charlier (2011) who consider the sample Fréchet mean as an esti-
mator for h in the model (3) where the effect xi also undergo warp-
ing by v, and give conditions under which the estimator is
consistent. They do however not consider parameter estimation
and prediction of random effects. In another related work, Elmi
et al. (2011) derive a B-spline based nonlinear mixed-effects model
in a maximum likelihood setting. The model allows incorporation
of data registration, and is applied to labor curve data, where
amplitude variation is modeled parametrically, with random addi-
tive and multiplicative effects. Another application of this type of
model is considered by Chambolle and Pock (2011) in the setting
of motion estimation in image sequences. They propose to include
a spatially correlated effect that plays the role of lighting differ-
ences between the images in question. Their approach, however,
does not take the uncertainty related to the prediction of the spa-
tially correlated effect into account in the estimation of the warp,
and do not consider the question of parameter estimation.

In the following we will derive inference methodology for the
model (3). In contrast to conventional preprocessing approaches
that register raw data, the proposed methods can separate horizon-
tal and vertical variation, and allows for maximum-likelihood esti-
mation of all hyperparameters.

3. Estimation

Consider model (3), where the functional data is defined on a
domain T # R, with m vectorized samples y1; . . . ; ym, each of which
consists of n points.

The estimation procedures consists of interleaved steps of
estimating (a) the fixed effect and the warps; and (b) the parame-
ters of the model and the serially correlated effects. In order to do

Fig. 1. Different types of variation in a one-dimensional functional dataset. The true underlying curve is shown in green, the average curve is shown in dashed red. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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