
Elastic Net subspace clustering applied to pop/rock music structure
analysis

Yannis Panagakis ⇑, Constantine Kotropoulos
Department of Informatics, Aristotle University of Thessaloniki, Greece

a r t i c l e i n f o

Article history:
Received 18 January 2013
Available online 12 November 2013

Communicated by Y. Liu

Keywords:
Elastic Net
Subspace clustering
Sparse representation
Music structure analysis
Auditory representations

a b s t r a c t

A novel homogeneity-based method for music structure analysis is proposed. The heart of the method is a
similarity measure, derived from first principles, that is based on the matrix Elastic Net (EN) regulariza-
tion and deals efficiently with highly correlated audio feature vectors. In particular, beat-synchronous
mel-frequency cepstral coefficients, chroma features, and auditory temporal modulations model the
audio signal. The EN induced similarity measure is employed to construct an affinity matrix, yielding a
novel subspace clustering method referred to as Elastic Net subspace clustering (ENSC). The performance
of the ENSC in structure analysis is assessed by conducting extensive experiments on the Beatles dataset.
The experimental findings demonstrate the descriptive power of the EN-based affinity matrix over the
affinity matrices employed in subspace clustering methods, attaining the state-of-the-art performance
reported for the Beatles dataset.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The musical form refers to the structural description of a music
piece at the time scale of sections. That is, a music piece is de-
scribed in terms of shorter, possibly repeated sections, which are
often labeled according to their musical function in the piece. In
Western pop/rock music and other related genres, common section
labels are intro, verse, chorus, bridge, etc. (Paulus et al., 2010).

Automatic music structure analysis aims at describing a music
piece in terms of sections by analyzing the audio signal. It employs
low-level feature sequences extracted from the audio signal in or-
der to model the timbral, melodic, and rhythmic content over time
(Paulus et al., 2010). The underlying hypothesis is that, the
structure is induced by the repetition of similar audio content
(Dannenberg and Goto, 2008). Repetition implies that, there is
some notion of similarity among the audio features, which can
be exploited to segment the music into sections. That is, contigu-
ous regions of similar music can be grouped together into
segments and the resulting segments can be clustered together,
defining the music sections. Technically, the segmentation of audio
feature sequences into structural parts (i.e., the music sections) is
achieved by employing methods detecting either homogeneity/
novelty or repetition in a recurrence plot or a self-distance matrix

(SDM) of audio features (Chen and Ming, 2011; Kaiser and Sikora,
2010; Levy and Sandler, 2008; Maddage, 2006; Paulus and Klapuri,
2009; Paulus et al., 2010; Weiss and Bello, 2010). Apart from a few
exceptions e.g., Maddage (2006) and Paulus and Klapuri (2009), the
majority of the aforementioned methods represent the music
structure in terms of tag sequences, instead of assigning musically
meaningful labels to the sections. For instance, the sequence of
tags describing the structure of Oh! Darling by The Beatles is
ABCBCBD as depicted in Fig. 1. Such a representation of the music
structure is sufficient for music information retrieval applications
(Dannenberg and Goto, 2008). For a comprehensive review on
automatic music structure analysis, the interested reader is
referred to Dannenberg and Goto (2008) and Paulus et al. (2010)
(and the references therein).

Here, we focus on the structure analysis of pop/rock music. In
these genres, a music section is often characterized by some sort
of inherent homogeneity. That is, the instrumentation, tempo, or
harmonic content is similar within the section (Paulus et al.,
2010). Since the content of a music signal is modeled by appropriate
audio feature vectors, a conventional way to reveal the desired
within-section similarities is to construct an SDM containing the
pairwise distances between all feature vectors and then to cluster the
similar feature vectors into the same music section (Dannenberg
and Goto, 2008; Paulus et al., 2010). However, similarity measures,
such as the Euclidean distance, the inner product, the cosine
distance, and the normalized correlation, which are often used to
construct the SDM for music structure analysis, ignore the subspace
structure of the music sections (Cheng et al., 2012). Such subspace
structures are known to be valuable for feature vector similarity
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measures in many clustering and classification problems (Cheng
et al., 2012; Vidal, 2011; Liu et al., 2013). Moreover, the aforemen-
tioned similarity measures are extremely fragile in the presence of
outliers (Vidal, 2011), hindering a reliable segmentation.

To exploit the hidden subspace structure and to increase
robustness, reconstruction-based (as opposed to distance-based)
similarity measures, such as the sparse (SR) (Vidal, 2011), the
low-rank (LRR) (Liu et al., 2013), and the ridge regression represen-
tation (RR) (Panagakis and Kotropoulos, 2012b) of audio features
are employed. The aforementioned representations measure the
similarities among the feature vectors by decomposing each fea-
ture vector as s a linear combination of all other feature vectors
seeking a sparse representation, a low-rank representation, or a
representation minimizing the least squares error. That is, they
minimize a proper norm of the representation matrix Z, requiring
X ¼ XZ, where X is the data matrix, by solving a convex optimiza-
tion problem indicated on the top of Fig. 2. If the data live in unions

of independent subspaces (Vidal, 2011; Liu et al., 2013) any of the
aforementioned three representations reveals the hidden subspace
structure, since it exhibits nonzero within-subspace affinities and
zero between-subspace affinities as illustrated in Fig. 2(a)–(e).

However, due to the homogeneity within the music sections, it
is expected groups of contiguous audio feature vectors to be highly
correlated. In this case, the SR, the LRR, and the RR can not reveal
accurately the hidden subspace structure of audio feature vectors,
hindering their reliable segmentation into music sections. Indeed,
the SR does not discriminate between correlated feature vectors
adequately (Tan et al., 2011). The low-rank constraint in the LRR
does not take into account explicitly the relationships between
contiguous audio feature vectors, since the nuclear norm applies
sparsity constraints on the spectrum (i.e., the singular values) of
the representation matrix and the RR does not perform feature
vector selection by shrinking together the coefficients of the corre-
lated feature vectors. The degraded performance of the aforemen-
tioned representations in handling highly correlated feature
vectors is demonstrated in Fig. 2(g)–(j).

In this paper, to alleviate the inability of the SR, the LRR, and the
RR-based similarity measures to cope with correlated feature
vector sequences, as those emerging in music structure analysis,
a novel reconstruction-based similarity measure, namely the
matrix Elastic Net induced similarity measure of audio features is
proposed. The contributions of the paper are:

� The matrix Elastic Net induced similarity measure is derived
from first principles by extending the Elastic Net (EN) (i.e., the
sum of ‘1-norm and squared ‘2-norm) regularized regression
in compressive sensing (Zou and Hastie, 2005) to the more gen-
eral setting of matrix subspace recovery (Liu et al., 2013). The
main motivation behind this, is that the EN is not only able to
cope with data drawn from independent subspaces shown in
2(a), but can also handle efficiently highly correlated feature
vector sequences as analyzed in Tan et al. (2011) and depicted

Fig. 1. Structural description of Oh! Darling by The Beatles. The song contains 7
segments from 4 different section-types namely, A,B,C, and D or intro (black
segment), verse (red segment), bridge (blue segment), and outro (gray segment) in
musical terms. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this article.)

Fig. 2. For illustrative purposes, 6 linear pairwise independent subspaces are constructed whose basis fUig6
i¼1 are computed by Uiþ1 ¼ RiUi; i ¼ 1;2; . . . ;5. U1 2 R100�10 is a

column orthonormal random matrix and Ri 2 R100�100 is a random rotation matrix. Consequently, the data matrix X ¼ ½X1;X2; . . . ;X6� 2 R100�600 is drawn from a union 6
independent subspaces, where Xi ¼ UiMi 2 R100�100; i ¼ 1;2; . . . ;6. Mi 2 R10�100; i ¼ 1;2; . . . ;6, is a random mixing matrix. Clearly the representation matrix Z is block-
diagonal (a–d) if the the EN, the SR, the LRR, or the RR is applied onto X. This does not hold for the SDM in (e) where non-zero between subspace affinities are observed. Next,

to simulate the case of highly correlated feature vectors, the data matrix X̂ ¼ ½X̂1; X̂2; X̂3� 2 R100�192 is constructed as follows: X̂s ¼ ½�X1
s ;

�X2
s ; . . . �X8

s � 2 R100�64; s ¼ 1;2;3, where
�Xk

1 ¼ ½x1k þ a1x2k; x1k þ a2x2k; . . . ;x1k þ a8x2k� 2 R100�8; �Xk
2 ¼ ½x3k þ a1x4k; x3k þ a2x4k; . . . ;x3k þ a8x4k� 2 R100�8 and �Xk

3 ¼ ½x5k þ a1x6k; x5k þ a2x6k; . . . ;x5k þ a8x6k� 2 R100�8; ai

are random weights, and xi j denotes the jth column of Xi . In other words, X̂s is drawn from a union of 2 subspaces containing in its columns highly correlated vectors and thus

the columns of X̂ live in 3 unions of subspaces. It is clear form (f–j) that only the EN, is able to reveal the hidden subspace structure of X̂s .
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