
Local information-based fast approximate spectral clustering q

Jiangzhong Cao a,b, Pei Chen a,⇑, Qingyun Dai b, Wing-Kuen Ling b

a School of Information Science and Technology, Sun Yat-sen University, Guangzhou 510006, China
b School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China

a r t i c l e i n f o

Article history:
Received 14 July 2013
Available online 19 November 2013

Keywords:
Spectral clustering
Local information
Sparse affinity graph
Local interpolation

a b s t r a c t

Spectral clustering has become one of the most popular clustering approaches in recent years. However,
its high computational complexity prevents its application to large-scale datasets. To address this com-
plexity, approximate spectral clustering methods have been proposed. In these methods, computational
costs are reduced by using approximation techniques, such as the Nyström method, or by constructing a
smaller representative dataset on which spectral clustering is performed. However, the computational
efficiency of these approximation methods is achieved at the cost of performance degradation. In this
paper, we propose an efficient approximate spectral clustering method in which clustering performance
is improved by utilizing local information among the data, while the scalability to the large-scale datasets
is retained. Specifically, we improve the approximate spectral clustering method in two aspects. First, a
sparse affinity graph is adopted to improve the performance of spectral clustering on the small represen-
tative dataset. Second, local interpolation is utilized to improve the extension of the clustering result.
Experiments are conducted on several real-world datasets, showing that the proposed method is efficient
and outperforms the state-of-the-art approximate spectral clustering algorithms.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Clustering, or cluster analysis is widely used in many research
fields, including pattern recognition, data mining, image process-
ing, and others. Many clustering algorithms have been developed
in past decades. Among these, spectral clustering, as a promising
method, has recently attracted considerable attention (Alzate and
Suykens, 2010; Tasdemir, 2012; Luxburg, 2007; Wang and Dong,
2012). Spectral clustering, which reveals cluster structures of data
by using eigenvectors of the Laplacian graph, can stably detect
nonconvex patterns and nonlinearly separable clusters (Shi and
Malik, 2000; Ng et al., 2002; Guattery and Miller, 1998). It is con-
sidered one of the most promising clustering techniques because of
its superior performance to traditional clustering algorithms when
performed on certain challenging datasets (Verma and Meila,
2003). However, spectral clustering becomes infeasible when
applying to large-scale datasets, because its computational com-
plexity increases cubically as the number of data points increases.

Several methods have been developed to apply spectral cluster-
ing to large datasets by speeding up the spectral clustering algo-
rithm. These methods can be loosely classified into two types.
One type accelerates spectral clustering by reducing the computa-
tion of the eigen-decomposition of the Laplacian graph (Fowlkes

et al., 2004; Tasdemir, 2012; Wang and Dong, 2012, Shang et al.,
2011; Chen and Cai, 2011; Zhang and Kwok, 2009). This method
is closely related to low-rank matrix approximations (Williams
and Seeger, 2000). The Nyström method, for example, which orig-
inated from the numerical solution of continuous eigenfunction
problems, has been commonly used in approximate spectral clus-
tering. Fowlkes et al. (2004) first proposed an approximate spectral
clustering method based on the Nyström approach. This method
interpolates the complete clustering solution by using only a small
number of randomly selected samples. Recently, other approxi-
mate spectral clustering algorithms based on Nyström methods
have been proposed (Tasdemir, 2012; Shang et al., 2011; Zhang
and Kwok, 2009). Their differences lie mainly in the sampling strat-
egy, showing that the sampling step is one of the factors that influ-
ence the performance of Nyström methods.

The other type of the approximate spectral clustering methods
samples a representative data set on which the spectral clustering
is performed, and the result is extended to the whole data set (Yan
et al. 2009; Shinnou and Sasaki, 2008). Yan et al. (2009) developed
a general framework for this type of approximate spectral cluster-
ing. They also present two concrete instances under this frame-
work, one based on K-means clustering (KASP) and the other
based on random projection trees (RASP). KASP is faster than
approximate spectral clustering based on the Nyström method,
while having comparable accuracy and a significantly smaller
memory. In addition, Chen et al. (2011) designed a distributed sys-
tem for parallelizing spectral clustering where more hardware is
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required. Spectral clustering can be applied to large-scale datasets
with these methods however, as mentioned earlier, it is achieved
at the cost of performance.

In this paper, we propose an improved approximate spectral
clustering method based on local information. In the proposed
method, an affinity graph with only local relations is adopted to
improve spectral clustering performance on a small representative
set, and local interpolation is proposed to improve the extension of
the clustering result on the small representative set. The proposed
method can obtain good clustering performance and retain scala-
bility to large-scale datasets.

The rest of this paper is organized as follows. The related works
on approximate spectral clustering is reviewed in Section 2. In Sec-
tion 3, we propose an efficient approximate spectral clustering
based on local information. Experimental results on several data-
sets are presented in Section 4. Finally, concluding remarks are
provided in Section 5.

2. Approximate spectral clustering

2.1. Spectral clustering

Spectral clustering is a class of methods based on eigen-decom-
positions of graph affinity matrices. Given a set of data points
S = {x1, . . ., xn}, a weighted graph G = (V, E) is first constructed in
which every vertex corresponds to a point in S and each edge is
weighted by the similarity between the connected points. The
Laplacian graph L (Chung, 1997) is then derived from the adjacency
matrix W of G, and the eigenvectors of L are computed. Finally, the
traditional K-means method is applied to the low dimensional rep-
resentations of the original data. There are many spectral cluster-
ing algorithms that are based on the above procedures (Luxburg,
2007; Shi and Malik, 2000; Ng et al., 2002).

In this paper, our proposed approximate algorithm is developed
in the Jordan-Weiss (NJW) framework (Ng et al., 2002). Therefore,
the NJW algorithm is briefly reviewed as Algorithm 1, for the rea-
son of completeness.

Algorithm 1. NJW spectral clustering algorithm

Input: Dataset S = {x1, . . ., xn} in R1 and the number of clusters
k

Output: k-way partition of the input data
(1) Construct the affinity matrix A by the following Gaussian

kernel function:

Aij ¼
expð�kxi�xjk2

d2 Þ for i– j;

0 for i ¼ j;

(
ð1Þ

where d is a scale parameter to control how fast the similarity attenuates with
the distance between the data points xi and xj .
(2) Compute the normalized affinity matrix L = D�1/2A D�1/2,

where D is the diagonal matrix with Dii ¼
Pn

j¼1Aij:

(3) Compute the k eigenvectors of L, v1, v2, . . . , vk, which are
associated with the k largest eigenvalues, and form the
matrix X = [v1v2, . . . , vk].

(4) Renormalize each row to form a new matrix Y e Rn�k with

Yij ¼ Xij=ð
P

jX
2
ijÞ

1=2
; so that each row of Y has a unit

magnitude.

(5) Treat each row of Y as a point in Rk and partition the n
points (n rows) into k clusters via a general cluster
algorithm, such as the K-means algorithm.

(6) Assign the original point xi to the cluster c if and only if the
corresponding row i of the matrix Y is assigned to the
cluster c.

2.2. Fast approximate spectral clustering

In the spectral clustering algorithm above, the major computa-
tional burden lies in the construction of the affinity matrix and the
computation of the eigenvectors of the Laplace matrix, with a com-
putational complexity of O(n2) and O(n3), respectively. Hence,
when the number of data points is large, the computational burden
of the spectral clustering method becomes unbearable, preventing
its application to large-scale datasets.

Several algorithms have been recently proposed to solve this
complexity problem by reducing spectral clustering computation.
As mentioned earlier, these algorithms can be broadly categorized
into two classes. Among these methods, KASP has the advantages
of simplicity and speed. In this section, we briefly review the KASP
algorithm (Yan et al., 2009), described below as Algorithm 2, be-
cause it shares a common framework with the algorithm being
proposed. This common framework consists of three steps: (i) con-
structing a representative set, (ii) performing spectral clustering on
the representative set, and (iii) extending the clustering result of
the representative set to the whole dataset. These steps influence
the performance of approximate spectral clustering in varying de-
grees. The influence of the first step has already been analyzed by
Yan et al. (2009). We aim to improve approximate spectral cluster-
ing by enhancing the last two steps, as described in the next
section.

Algorithm 2. K-means-based approximate spectral
clustering (KASP)

Input: Dataset S = {x1, . . .xn} in R1; the number of clusters, k;
and the number of representative points, p

Output: k-way partition of the input data.
(1) Perform the K-means clustering with p clusters on the

dataset S. Use the p centroids of the clusters, denoted by
Y = {y1, y2. . ., yp}, as the representative set and construct the
correspondence table associating each xi with the nearest
cluster centroid yj.

(2) Perform a spectral clustering algorithm on Y = {y1, y2. . ., yp}
to obtain the k-way partition of Y.

(3) Assign cluster membership for each xi by looking up the
cluster membership of the corresponding center yj in the
correspondence table.

3. Approximate spectral clustering based on local information

In this section, we present an efficient approximate spectral
clustering method based on local information. The proposed meth-
od is based on two assumptions: (1) The points in the same cluster
have more similarity; and (2) The nearby points are likely to have
the same label. In other words, the rows of Y in the NJW algorithm
that correspond with nearby points are likely to be closer. These
assumptions have been applied to many clustering algorithms
(Zhou and Bousquet, 2004).

Based on the assumptions above, we improve the approximate
spectral algorithm in the following aspects. First, starting from
assumption (1), we analyze that the ideal affinity graph for spectral
clustering should be sparse; therefore, the approximate ideal affin-
ity graph with local information is adopted in the proposed meth-
od to improve performance of spectral clustering on the
representative points. Second, based on assumption (2), we pro-
pose local interpolation to improve the extension from the cluster-
ing result to the whole result. The details are presented in the next
subsections.
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