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a b s t r a c t

Auditory salience describes how much a particular auditory event attracts human attention. Previous
attempts at automatic detection of salient audio events have been hampered by the challenge of defining
ground truth. In this paper ground truth for auditory salience is built up from annotations by human sub-
jects of a large corpus of meeting room recordings. Following statistical purification of the data, an opti-
mal auditory salience filter with linear discrimination is derived from the purified data. An automatic
auditory salience detector based on optimal filtering of the Bark-frequency loudness performs with
32% equal error rate. Expanding the feature vector to include other common feature sets does not
improve performance. Consistent with intuition, the optimal filter looks like an onset detector in the time
domain.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In our daily lives we are often confronted with an overwhelm-
ing amount of sensory information, far exceeding the processing
capabilities of our brains. How can we still make sense of the world
around us, for instance, in a busy traffic situation? We need mech-
anisms to select the relevant or important information out of the
data deluge accosting our sensory systems. Our brains achieve this
with selective attention – a process of preferentially processing
some stimuli over others.

Attention can be driven from the top down by intent and voli-
tion, or it can be triggered from the bottom up by intrinsic proper-
ties of the stimulus that make the stimulus highly noticeable, or
salient (Itti and Koch, 2001; Connor et al., 2004). In a traffic situa-
tion, for example, we may decide to pay attention to street signs or
to the traffic report on the radio, but the siren and flashing lights of
an approaching ambulance will nevertheless immediately grab our
attention.

As a mechanism of deliberate, goal-directed orienting of our
senses top-down attention reflects our longer-term cognitive strat-
egy. For instance, in preparing a lane change we will pay special
attention to traffic from behind in the rear view mirrors and even
orient our head to the side to look over our shoulder before

initiating the lane change. Bottom-up attention, on the other hand,
allows us to react to salient or surprising stimuli (Itti and Baldi,
2006), whether they are an attacking predator or a pedestrian
jumping in front of our car.

In fact, many signals in our environment are designed in such a
way that they trigger our bottom-up attention system. For in-
stance, flashing lights are used to attract our attention to a waiting
message on the answering machine or to another driver’s intention
to make a turn. Salient sounds trigger our bottom-up attention
when we forget to take the cash from the ATM or when a fire
alarm is wailing at a volume that is impossible to ignore. In many
cases, sounds are better suited to attract our attention than
visual stimuli, because we do not need to be oriented toward them
in order to perceive them, and, unlike our eyes, our ears are never
shut.

In the visual domain, bottom-up salience is believed to be dri-
ven by a number of low-level features, such as local color and lumi-
nance contrasts and oriented edges (Koch and Ullman, 1985).
Contributions to stimulus salience from these features are
combined into a saliency map (Itti et al., 1998), which is then used
to guide sequential scanning of a scene, in order to serialize per-
ception of individual objects (Walther and Koch, 2006). Attempts
have been made to apply a similar concept to the auditory domain,
e.g., by computing a visual saliency map of the spectrogram of an
auditory stimulus with slightly adapted features (Kayser et al.,
2005; Kalinli and Narayanan, 2009; Kalinli et al., 2009; Segbroeck
and Hamme, 2010).
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Salience in both the visual and the auditory domains can be
loosely described as something being different from its immediate
neighborhood (Kayser et al., 2005; Kayahara, 2005; Coensel et al.,
2009). Here, neighborhood can be understood in the sense of space,
time, frequency, or any other feature space. However, beyond these
superficial similarities, there are important differences between
visual and auditory salience. For instance, auditory events often
overlap in time. Segregation of overlapping sounds is much harder
than segmenting visual objects from an image. Furthermore,
acoustic signals are processed continuously in real time. This has
implications for the speed of processing as well as the shape of
filters that are used. Filters in the time domain need to be
asymmetric, because they can only use current and past but not
future parts of the signal. In the visual domain, on the other hand,
image space is typically assumed to be isotropic, leading to
symmetric filters. This serves to illustrate that the detection of
auditory salience is more complicated than applying visual sal-
ience detection to a graphical representation (e.g., a spectrogram)
of an audio signal.

To our knowledge no systematic effort has been made to iden-
tify which features are essential for auditory salience. In this paper
we use a data-driven approach to this issue. Based on the annota-
tions of salient audio events by human participants we derive the
optimal filter for auditory salience. To this end we have to solve
several issues: (i) we have to devise a protocol for the annotation
of a large corpus of audio data; (ii) we have to acquire a sufficient
number of annotations to allow inference to the salience of audio
events; (iii) we have to separate the effects of stimulus-driven bot-
tom-up attention (salience) from task-driven top-down attention
(expectation); and (iv) we have to develop a detection algorithm,
which can consider time–frequency variations of acoustically
sensed signals in an efficient way. We report solutions to all four
problems in the following sections.

2. Establishing ground truth for auditory salience

One of the major reasons holding back research on auditory sal-
ience is the difficulty of acquiring and interpreting ground truth
data from human observers. Kayser et al. attempted to measure
audio salience by asking human subjects to choose the more sali-
ent out of two sounds (Kayser et al., 2005). They used natural
sounds such as animal sounds with additional noise to eliminate
any top-down semantic associations.

Unlike Kayser’s study, we here consider signals in which both
top-down and bottom-up attention allocation processes may be
active. This leaves us with the conundrum of separating top-down
from bottom-up contributions. In our approach to this problem we
measure inter-observer agreement. If transcribers are not told to
listen for any specific class of audio events, then their cognitive
models of the task should vary somewhat from transcriber to tran-
scriber, and therefore their expectation-driven (top-down) atten-
tion allocation should also vary. Audio events that are noticeable
due to top-down attention should vary across individuals much
more than events that are salient due to bottom-up factors, which
should be more uniform among people. In other words, any sound
may catch the attention of someone who is listening for it, but a
more salient sound should catch the attention of more transcribers
than a less salient sound.

By its design this approach cannot distinguish between situa-
tion-driven attention that is shared among most individuals and
purely stimulus-driven salience. However, the distinction between
top-down and bottom-up attention defined in this manner has
been used successfully in the investigation of visual attention
(Einhäuser et al., 2007). We therefore adopt the discrimination of
detected events into observer-general and observer-specific

components as an operational definition of bottom-up and top-
down attention for this work.

2.1. Salience annotation

We used the AMI Meeting Corpus (AMI project, date last viewed
7/15/2010,) to investigate audio salience. The AMI corpus was
designed by a 15 member multi-disciplinary consortium dedicated
to the research and development of technology that will help
groups interact better. It consists of 100 h of recordings of meet-
ings and includes close-talk and far-field microphones, individual
and room-view video cameras, and output from a slide projector
and an electronic whiteboard. The meetings were recorded in Eng-
lish using three different rooms with different acoustic properties
and include mostly non-native speakers of English. The dialogues
in the corpus are usually designed to capture completely natural
and uncontrolled conversations.

Various unpredictable acoustic events and background noise in
the corpus provide us with a diverse acoustic scene, which is
important to cover the range of potential auditory events as widely
as possible. Naturally, the AMI corpus does not cover all possible
acoustic scenes, but it shows more variations in human interac-
tions in a real environment than any other available database.

We arbitrarily selected 12 h of recordings from the AMI corpus.
We mixed the recordings from the microphone arrays in the se-
lected sessions into one recording. We then asked 12 annotators
to listen to the recordings and annotate salient passages per mouse
click in a custom interface. Participants were given the following
instructions:

‘‘Imagine that you were in the conference room you are listening to.
You might focus on the conversation between members in the confer-
ence room or not. During listening you should mark the moment when
you hear any sound which you unintentionally pay attention to or
which attracts your attention. The sound might be any sound, includ-
ing speech.’’

We intentionally gave as little guidance as possible about the
nature of the acoustic events that should be annotated in order
to minimize top-down influences. The annotation resulted in a bin-
ary signal, where 1 denoted ‘‘noticeable’’ and 0 ‘‘not-noticeable’’
sounds. All 12 participants annotated all 12 recordings. Annota-
tions of the same recording were combined by summing the binary
signals, resulting in annotation scores in f0;1; . . . ;12g. To account
for variations among subjects in the precise start and end times of
annotated events we re-aligned the annotations before summa-
tion. We set starting points to the earliest among the salience
annotations (marked as 1) and ending points to the latest for each
annotation event, which ensures that the annotation event con-
tains the acoustic signal that captured annotator attention.

Observing the summed annotation scores, acoustic events se-
lected as salient include pulling up chairs, slamming a door, and
footsteps. Vocal sounds like coughing and laughing are sometimes
annotated with high scores. In spite of their low sound pressures,
some quiet sounds such as tapping a mouse on a desk get high
score, whereas annotations for some loud sounds such as loud
speech are less consistent across participants. Acoustic events with
medium scores tend to be semantically similar to those with high
scores (e.g., laughter sometimes receives high scores, but some-
times receives only medium scores). The semantic overlap be-
tween the high-score region and medium-score region suggests
that not all sounds in the medium-score region are the objects of
top-down attention allocation; instead, it may be the case that
sounds that are perceptually salient, but with a lower degree of sal-
iency, might receive salience labels from only a subset of the anno-
tators, and might therefore wind up in the medium-score region.
This reasoning suggests that, while high-scoring sounds are salient,
not all salient sounds are high-scoring.
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