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a b s t r a c t

Nonlinear dimensionality reduction is essential for the analysis and the interpretation of high dimen-
sional data sets. In this manuscript, we propose a distance order preserving manifold learning algorithm
that extends the basic mean-squared error cost function used mainly in multidimensional scaling (MDS)-
based methods. We develop a constrained optimization problem by assuming explicit constraints on the
order of distances in the low-dimensional space. In this optimization problem, as a generalization of MDS,
instead of forcing a linear relationship between the distances in the high-dimensional original and low-
dimensional projection space, we learn a non-decreasing relation approximated by radial basis functions.
We compare the proposed method with existing manifold learning algorithms using synthetic datasets
based on the commonly used residual variance and proposed percentage of violated distance orders met-
rics. We also perform experiments on a retinal image dataset used in Retinopathy of Prematurity (ROP)
diagnosis.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Due to the recent advances, acquisition of large volumes of high
dimensional data has become more common in every aspect of
daily life: stock market, social media, medical data, etc. Analysis
and interpretation of such data requires finding meaningful low-
dimensional structures in these huge data sets. Manifold learning
attempts to accomplish such data explorations and dimensionality
reductions.

Manifold learning can be regarded as identifying a nonlinear
mapping from the original higher dimensional data space to a lower
dimensional representation. Existing methods can be classified into
three categories: global methods that tend to preserve global prop-
erties in the low-dimensional representation, local methods that
aim to preserve the local geometry in the embedded space and
techniques based on global alignment of multiple linear models
(Van der Maaten et al., 2009). Multidimensional scaling (MDS) is
one of the global methods that finds a projection of the original data
while preserving the pairwise Euclidean distances (Kruskal, 1964).
In the literature, various techniques are proposed to minimize MDS
cost function (Dzwinel and Blasiak, 1999; Pawliczek et al., 2013;
Pawliczek and Dzwinel, 2013; Andrecut, 2009). Similarly, in
Isomap, one uses a geodesic distance estimation to use with MDS

(Tenenbaum et al., 2000). Different variations of Isomap have been
proposed in the literature: landmark and conformal Isomap (Silva
and Tenenbaum, 2002). On the other hand, local methods (Zhang
and Zha, 2004; Roweis and Saul, 2000; Weinberger and Saul,
2006; Dollár et al., 2006, 2007; Coifman and Lafon, 2006; Hinton
and Roweis, 2002) constructs the lower dimensional data using
the local linear relations in the original space. Local tangent space
alignment (LTSA) (Zhang and Zha, 2004) represents the local geom-
etry of the manifold with local tangent spaces that are learned
through the neighborhood of each sample. Similarly, local linear
embedding (LLE) (Roweis and Saul, 2000) aims to preserve local
neighborhood information, while Semidefinite Embedding (SDE)
(Weinberger and Saul, 2006) involves preserving local isometries
on a k-nn graph. Coifman and Lafon (2006) presents a method that
constructs local coordinates by learning a family of diffusion maps
(DM). Another use of local geometry is by locally smooth manifold
learning (LSML) (Dollár et al., 2006, 2007) which is based on learn-
ing a warping function, that takes any sample in the manifold and
generates its neighbors. Stochastic neighborhood embedding
(SNE) (Hinton and Roweis, 2002) and its variations (Xie et al.,
2011; Van der Maaten and Hinton, 2008) are among probabilistic
approaches that construct the neighborhood relations based on
Gaussian kernels. Although local approaches have computational
advantages, they might have limitations in preserving global geom-
etry, especially if the data is sparse. Other methods that are based
on global alignment of linear models aim to combine the local
and global techniques by fitting a number of local linear models
and merging them with a global alignment. Local linear coordina-
tion (LLC) (Teh and Roweis, 2002) and manifold charting (Brand,
2003) methods fall into this category.
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In this manuscript, we propose a nonlinear dimensionality
reduction method that extends the basic idea used by the MDS
and its variations. Although the ultimate goal is to preserve the dis-
tance orders, MDS algorithm only focuses on minimizing the
mean-squared error between the input and output distances
(Kruskal, 1964). There is no explicit constraint on the distance or-
ders during the solution of this optimization problem. Moreover,
this minimization results in a linear relationship between distance
spaces. Linear fit assumption between the distances in the original
and low-dimensional projection spaces is very restricted and
embedding is achieved in this restrictive family. To address these
two important issues, we first generalize the mean squared error
cost function to include more general relations between distance
spaces. Instead of assuming a predefined relationship, we propose
to also learn the relationship between distances while we project
the data from the original space. Our only assumption on the rela-
tionship is to have a monotonic nondecreasing function in order to
preserve the distance relationships observed in the original space
in the projected space. Then, we develop a constrained optimiza-
tion problem by incorporating the distance orders as inequality
constraints. As a solution of this problem, we not only learn the
data in the projected space but also learn the non-linear relation
between distance spaces. The final form of the proposed optimiza-
tion problem is a generalization of the existing global MDS-based
manifold learning algorithms such that the existing methods are
approximate solutions of the simplified version of this problem.
In this manuscript, we focus on the formulation and theoretical as-
pects of the problem. Possible acceleration of the proposed method
by convex relaxations and further approximations to analyze real
data will be part of our future research.

Another commonly used manifold learning algorithm which
has a nonlinear mapping between distance spaces is Sammons
mapping (Sammon, 1969). Sammon’s map, a nonlinear extension
of MDS, first maps the input data to a nonlinear predefined feature
space and tries to preserve the distances in this feature space. Dif-
ferent than Sammon’s mapping, we assume an unknown nonlinear
relationship between the input and output distances while pre-
serving the distance orders from the original space.

The rest of the paper is organized as follows: We first define the
notation used throughout the paper in Section 2.1. Next, problem
formulation is presented in Section 2.2. The solution of the optimi-
zation problem and performance evaluation metrics are explained
in Sections 2.3 and 2.4 respectively. In Section 3, we report the
experiments and results and the paper is concluded in Section 4.

2. Learning algorithm

In this section, we describe the proposed method for manifold
learning. We first define the data model and notations to be used
throughout the manuscript. Then using this model we formulate
the desired manifold learning problem and develop our
algorithm. We derive an optimization problem that solves the
manifold learning algorithm, starting with the commonly used
cost function, mean-squared error minimization, and demonstrate
that this cost function can be extended to include different dis-
tance relations between the original and projection space data
points, and explicit constraints that preserve distance orders in
the projected space.

2.1. Data model and notation

We represent the original and the projected data spaces as X
and Y, respectively. Then, xi 2 X and yi 2 Y with i ¼ 1; . . . ; N
are the data points. In this representation, x and y are vectors
and N is the number of the data points. We assume that

dimðXÞ ¼ d P dimðYÞ ¼ ~d. Moreover, we have dx
i;j and dy

i;j as the
distances between the ith and jth data points in the original and
the low-dimensional data spaces, jj � jj represents the L2-norm of
a vector.

2.2. Problem formulation

We formulate the manifold learning algorithm as a constrained
optimization problem. Our approach restricts the minimum
mean-squared error solutions used by some existing manifold
learning algorithms (Kruskal, 1964; Tenenbaum et al., 2000).
Specifically, these aim to minimize the difference between the
distances of any two points in the original and projected spaces.
That is, the difference between dy

i;j and dx
i;j for 8i; j ¼ 1; . . . ; N is

minimized, which on average results in a linear relationship
between each dx

i;j and dy
i;j pair (as a result of the least-square

solution).

min
yk k¼1; ...; N

XN�1

i¼1

XN

j¼iþ1

jjdy
i;j � dx

i;jjj
2
; ð1Þ

where dy
i;j ¼ jjyi � yjjj is the Euclidean distance and dx

i;j is the
distance between the ith and jth points. Note here that the
minimization is performed over the data points yi in the projected
space.

In the proposed algorithm, we compute dx
i;j as the estimated

geodesic distance between the ith and jth data points. We follow
the method described in Tenenbaum et al. (2000) to compute the
geodesic distances in the original space. First, the Euclidean
distance between every pair of data points in the original space
(data pairwise distance matrix) is computed. Then, a k-nearest
neighbor (knn) graph or �-ball graph is generated. That is, k-near-
est neighbors of a data point or neighbors within � distance for
each datum is taken, and the edge lengths from points outside
these areas to the reference datum are set to be infinite, and the
pairwise distance matrix is updated accordingly. Finally, Floyd
algorithm is applied over this matrix to find approximate geodesic
distances between the data pairs (Tenenbaum et al., 2000). Floyd’s
algorithm, an example of dynamic programming, finds the shortest
path between each pair of vertices in a weighted graph (Floyd,
1962).

In our algorithm, we propose to generalize the minimum mean-
squared error approach in (1) to include a broader relationship
between the distances in the original and the low-dimensional
projection space. For that purpose we rewrite (1) as

min
yk k¼1; ...; N

XN�1

i¼1

XN

j¼iþ1

jjdy
i;j � hðdx

i;jÞjj
2
; ð2Þ

where hð�Þ is a monotonic nondecreasing function. We represent the
derivative of hð�Þ as

h0ðdx
i;jÞ ¼

XN�1

k¼1

XN

l¼kþ1

wklkðdx
i;j � dx

k;lÞ; ð3Þ

where kðgÞ is a translation-invariant kernel function and wkl’s are
the multiplicative coefficients. We force wkl P 0 to have hð�Þ as a
nondecreasing function. That is, we represent the derivative of
hð�Þ as a nonnegative weighted sum of kernel functions. Monotonic
nondecreasing functions hð�Þ will guarantee that we preserve the
order of original distances in the projected space.

Then, we have

hðdx
i;jÞ ¼

XN�1

k¼1

XN

l¼kþ1

wklKðdx
i;j � dx

k;lÞ; ð4Þ

where
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