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a b s t r a c t

Coupled training of dimensionality reduction and classification is proposed previously to improve the
prediction performance for single-label problems. Following this line of research, in this paper, we first
introduce a novel Bayesian method that combines linear dimensionality reduction with linear binary
classification for supervised multilabel learning and present a deterministic variational approximation
algorithm to learn the proposed probabilistic model. We then extend the proposed method to find intrin-
sic dimensionality of the projected subspace using automatic relevance determination and to handle
semi-supervised learning using a low-density assumption. We perform supervised learning experiments
on four benchmark multilabel learning data sets by comparing our method with baseline linear dimen-
sionality reduction algorithms. These experiments show that the proposed approach achieves good per-
formance values in terms of hamming loss, average AUC, macro F1, and micro F1 on held-out test data.
The low-dimensional embeddings obtained by our method are also very useful for exploratory data anal-
ysis. We also show the effectiveness of our approach in finding intrinsic subspace dimensionality and
semi-supervised learning tasks.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Multilabel learning considers classification problems where
each data point is associated with a set of labels simultaneously in-
stead of just a single label (Tsoumakas et al., 2009). This setup can
be handled by training distinct classifiers for each label separately
(i.e., assuming no correlation between the labels). However,
exploiting the correlation information between the labels may im-
prove the overall prediction performance. There are two common
approaches for exploiting this information: (i) joint learning of
the model parameters of distinct classifiers trained for each label
(Boutell et al., 2004; Zhang and Zhou, 2007; Sun et al., 2008;
Petterson and Caetano, 2010; Guo and Gu, 2011; Zhang, 2011;
Zhang et al., 2011) and (ii) learning a shared subspace and doing
classification in this subspace (Yu et al., 2005; Park and Lee,
2008; Ji and Ye, 2009; Rai and Daumé, 2009; Ji et al., 2010; Wang
et al., 2010; Zhang and Zhou, 2010). In this paper, we are focusing
on the second approach.

Dimensionality reduction algorithms try to achieve two main
goals: (i) removing the inherent noise to improve the prediction
performance and (ii) obtaining low-dimensional visualizations for
exploratory data analysis. Principal component analysis (PCA)

(Pearson, 1901) and linear discriminant analysis (LDA) (Fisher,
1936) are two well-known algorithms for unsupervised and super-
vised dimensionality reduction, respectively.

We can use any unsupervised dimensionality reduction algo-
rithm for multilabel learning. However, the key idea in multilabel
learning is to use the correlation information between the labels
and we only consider supervised dimensionality reduction algo-
rithms. As an early attempt, Yu et al. (2005) propose a supervised
latent semantic indexing variant that makes use of multiple labels.
Park and Lee (2008) and Wang et al. (2010) modify LDA algorithm
for multilabel learning. Rai and Daumé (2009) propose a probabi-
listic canonical correlation analysis method that can also be applied
in semi-supervised settings. Ji et al. (2010) and Zhang and Zhou
(2010) formulate multilabel dimensionality reduction as an eigen-
value problem that uses input features and class labels together.

For supervised learning problems, dimensionality reduction and
prediction steps are generally performed separately with two dif-
ferent target functions, leading to low prediction performance.
Hence, coupled training of these two steps may improve the over-
all system performance. Biem et al. (1997) propose a multilayer
perceptron variant that performs coupled feature extraction and
classification. Coupled training of the projection matrix and the
classifier is also studied in the framework of support vector ma-
chines by introducing the projection matrix into the optimization
problem solved (Chapelle et al., 2002; Pereira and Gordon, 2006).
Gönen and Alpaydın (2010) introduce the same idea to a localized
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multiple kernel learning framework to capture multiple modalities
that may exist in the data. There are also metric learning methods
that try to transfer the neighborhood in the input space to the pro-
jected subspace in nearest neighbor settings (Goldberger et al.,
2005; Globerson and Roweis, 2006; Weinberger and Saul, 2009).
Sajama and Orlitsky (2005) use mixture models for each class to
obtain better projections, whereas Mao et al. (2010) use them on
both input and output data. The resulting projections found by
these approaches are not linear and they can be regarded as man-
ifold learning methods. Yu et al. (2006) propose a supervised prob-
abilistic PCA and an efficient solution method, but the algorithm is
developed only for real outputs. Rish et al. (2008) formulate a
supervised dimensionality reduction algorithm coupled with gen-
eralized linear models for binary classification and regression,
and maximize a target function composed of input and output like-
lihood terms using an iterative algorithm.

In this paper, we propose novel supervised and semi-supervised
multilabel learning methods where the linear projection matrix and
the binary classification parameters are learned together to
maximize the prediction performance in the projected subspace.
We make the following contributions: In Section 2, we give the
graphical model of our approach for supervised multilabel learning
called Bayesian supervised multilabel learning (BSML) and introduce
a deterministic variational approximation for inference. Section 3
formulates our two variants: (i) BSML with automatic relevance
determination (BSML + ARD) to find intrinsic dimensionality of the
projected subspace and (ii) Bayesian semi-supervised multilabel
learning (BSSML) to make use of unlabeled data. In Section 4, we dis-
cuss the key properties of our algorithms. Section 5 tests our algo-
rithms on four benchmark multilabel data sets in different settings.

2. Coupled dimensionality reduction and classification for
supervised multilabel learning

Performing dimensionality reduction and classification succes-
sively (with two different objective functions) may not result in a
predictive subspace and may have low generalization perfor-
mance. In order to find a better subspace, coupling dimensionality
reduction and single-output supervised learning is previously pro-
posed (Biem et al., 1997; Chapelle et al., 2002; Goldberger et al.,
2005; Sajama and Orlitsky, 2005; Globerson and Roweis, 2006;
Pereira and Gordon, 2006; Yu et al., 2006; Rish et al., 2008; Wein-
berger and Saul, 2009; Gönen and Alpaydın, 2010; Mao et al.,
2010). We should consider the predictive performance of the target
subspace while learning the projection matrix. In order to benefit
from the correlation between the class labels in a multilabel learn-
ing scenario, we assume a common subspace and perform classifi-
cation for all labels in that subspace using different classifiers for
each label separately. The predictive quality of the subspace now
depends on the prediction performances for multiple labels instead
of a single one.

Fig. 1 illustrates the probabilistic model for multilabel binary
classification with a graphical model and its distributional assump-
tions. The data matrix X is used to project data points into a low-
dimensional space using the projection matrix Q . The low-dimen-
sional representations of data points Z and the classification
parameters fb;Wg are used to calculate the classification scores.
Finally, the given class labels Y are generated from the auxiliary
matrix T, which is introduced to make the inference procedures
efficient (Albert and Chib, 1993). We formulate a variational
approximation procedure for inference in order to have a computa-
tionally efficient algorithm.

The notation we use throughout the manuscript is given in
Table 1. The superscripts index the rows of matrices, whereas the

subscripts index the columns of matrices and the entries of
vectors. As short-hand notations, all priors in the model are
denoted by N ¼ fk;U;Wg, where the remaining variables by
H ¼ fb;Q ;T;W;Zg and the hyper-parameters by f ¼ fak; bk;a/;

b/;aw; bwg. Dependence on f is omitted for clarity throughout the
manuscript. Nð�;l;RÞ denotes the normal distribution with the
mean vector l and the covariance matrix R. Gð�;a; bÞ denotes the
gamma distribution with the shape parameter a and the scale
parameter b. dð�Þ denotes the Kronecker delta function that returns
1 if its argument is true and 0 otherwise.

2.1. Inference using variational approximation

The variational methods use a lower bound on the marginal
likelihood using an ensemble of factored posteriors to find the joint
parameter distribution (Beal, 2003). Assuming independence be-
tween the approximate posteriors in the factorable ensemble can
be justified because there is not a strong coupling between our
model parameters. We can write the factorable ensemble approx-
imation of the required posterior as

pðH;NjX;YÞ � qðH;NÞ ¼ qðUÞqðQ ÞqðZÞqðkÞqðWÞqðb;WÞqðTÞ

and define each factor in the ensemble just like its full conditional
distribution:
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where að�Þ; bð�Þ; lð�Þ, and Rð�Þ denote the shape parameter, the
scale parameter, the mean vector, and the covariance matrix for
their arguments, respectively. TN ð�;l;R;qð�ÞÞ denotes the truncated
normal distribution with the mean vector l, the covariance matrix
R, and the truncation rule qð�Þ such that TN ð�;l;R;qð�ÞÞ / N ð�;l;RÞ
if qð�Þ is true and TN ð�;l;R;qð�ÞÞ ¼ 0 otherwise.

We choose to model projected data instances explicitly (i.e., not
marginalizing out them) and independently (i.e., assuming a distri-
bution independent of other variables) in the factorable ensemble
approximation in order to decouple the dimensionality reduction
and classification parts. By doing this, we achieve to obtain update
equations for Q and fb;Wg independent of each other.

We can bound the marginal likelihood using Jensen’s inequality:
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