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a b s t r a c t

Infrared spectroscopy data is characterized by the presence of a huge number of variables. Applications

of infrared spectroscopy in the mid-infrared (MIR) and near-infrared (NIR) bands are of widespread use

in many fields. To effectively handle this type of data, suitable dimensionality reduction methods are

required. In this paper, a dimensionality reduction method designed to enable effective Support Vector

Machine Recursive Feature Elimination (SVM-RFE) on NIR/MIR datasets is presented. The method exploits

the information content at peaks of the spectral envelope functions which characterize NIR/MIR spectra

datasets. Experimental evaluation across different NIR/MIR application domains shows that the proposed

method is useful for the induction of compact and accurate SVM classifiers for qualitative NIR/MIR appli-

cations involving stringent interpretability or time processing requirements.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Infrared (IR) spectroscopy is a non-invasive technique allow-

ing the identification and characterization of chemical compounds

using their interaction with light. Applications of IR spectroscopy

in the mid-infrared (MIR) and near-infrared (NIR) bands are of

widespread use in many fields, including agriculture [18,41], food

and wines quality [16,17,31], postharvest handling of fruits and

vegetables [2,36] and plastic recycling [28].

Main advantages and limitations of MIR and NIR techniques can

be explained by the differences in the origin of their absorption

spectra. While the MIR spectra follow from the vibration of funda-

mental bands, the NIR spectra follow from the overtone and com-

bination of fundamental MIR bands. Hence, while the MIR spectra

tend to be simple with very sharp and specific peaks, the NIR spec-

tra tend to be rather complex with many broad overlapping bands.

Thus, the interpretation of NIR spectra can be very challenging,

especially for complex mixtures of samples. However, since the

absorption of light in the NIR region (780–2500 nm) is less in-

tense than in the MIR one (2500–15000 nm), a deeper penetration

of light into matter can be accomplished and a minimal sample

preparation is required for NIR applications.
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In practice, IR spectra are presented as high dimensional vec-

tors of factors. For the NIR case, factors are highly correlated. To ef-

fectively handle this type of data, dimensionality reduction meth-

ods are required. For quantitative applications, with main focus on

predictive modeling and not on the identification of relations be-

tween factors, Partial Least Squares (PLS) regression methods [32]

are traditionally used. Briefly, by means of PLS regression methods,

a handy number of latent factors accounting for most of the varia-

tion of target responses are first selected and then used to perform

linear predictions. On the other hand, for qualitative applications,

with main focus just on the identification of robust classification

boundaries [30], PLS-DA [5,21] methods can be applied. However,

when interpretability is also required feature selection methods, al-

lowing the identification of relevant classification factors, must be

used [46]. This is especially true for almost real-time qualitative

NIR applications based on Support Vector Machines (SVM) classi-

fiers [3], a class of machine learning algorithms characterized by

their high accuracy and its ability for modeling diverse types of

high dimensional data [48]. Applications of SVMs can be found in

multiple fields, including bioinformatics [39], sound analysis [20]

and chemometrics [50]. Owing to the natural ability of SVMs clas-

sifiers to deal with high dimensional data, initial works with SVMs

in chemometrics focused more on model selection than on data

interpretation or time-processing issues [11,13], i.e., the complete

spectrum of IR datasets were usually considered. However, to ac-

complish compact and thus interpretable SVM classifiers for al-

most real-time qualitative applications, a reduced fraction of the IR
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spectra is required. From the application point of view, working

with specific regions instead of the complete spectrum would al-

low the utilization of IR sensors of higher resolution. To this aim,

we first note that the highly correlated nature of the NIR spectra

limits the effectiveness of fast univariate feature selection meth-

ods assuming the independence between features [42]. Actually,

to avoid the selection of redundant features that may be induced

by univariate methods, multivariate feature selection, able to take

into account interaction between features are recommended. We

note, however, multivariate feature selection methods dismiss spe-

cific learning aspects of classification methods, a critical aspect in

the construction of compact and accurate SVM classifiers.

To introduce specific learning aspects of classification methods

into feature selection tasks, embedded feature selection methods

are required. For SVM classifiers this can be accomplished with the

SVM recursive feature elimination (SVM-RFE) [22] method, a fea-

ture selection method built upon SVM classifiers aiming to identify

relevant feature subsets. We note, however, that few studies have

considered the direct application of SVM-RFE to the problem of

NIR samples classification. As mentioned in [12], SVM-RFE can be

too computationally expensive, specially when only one least use-

ful feature is removed at each iteration step. Also, SVM-RFE may

be unstable with respect to variations in the training data [27]. Al-

though of both these problems may be mitigated with SVM-RFE

ensemble variants [47], we note that SVM-RFE does not specifically

consider the redundancy between features [35]. Hence, SVM-RFE

on IR datasets may lead to the selection of redundant wavelengths

and this undesirable effect may be just reinforced by SVM-RFE en-

semble variants. Since direct application of SVM-RFE to IR datasets

may be suboptimal, alternative feature selection methods based on

genetic algorithms [19,34] and random forest classifiers with PCA

[51] have been reported in literature. These considerations strongly

suggest that further processing to IR datasets is required before ef-

fective SVM-RFE can be accomplished.

In this paper, we show that preservation of the so-called spec-

tral envelope function, a smooth (slowly varying) function of fre-

quency which passes through most significant spectral peaks of IR

training datasets, plays an important role in the design of compact

and accurate SVM classifiers for qualitative IR applications. With

this aim, a two-stage feature selection algorithm designed to cap-

ture main features of the spectral envelope function is presented.

For this propose, a set of prospective, yet raw, spectral regions is

first identified using an unsupervised approach around most sig-

nificant IR peaks of the spectral envelope function. These regions

are further refined using a stabilized version of the SVM-RFE algo-

rithm with respect to variations in the training data. To favor in-

terpretability issues, spectral regions are individually refined. In this

way, core spectral envelope information gets preserved. The com-

plete set of spectral points across refined IR regions is then used

to train compact SVM classifiers.

2. Spectral envelope functions towards effective SVM-RFE on IR

data

We notice that the problem of selecting a reduced set of

discriminative wavelengths for challenging qualitative NIR ap-

plications closely resembles that of the fundamental frequency

estimation of a mixture of harmonic sources in the context of

music applications [10,37]. We observe that in the audio setting,

data is often reduced for retaining salient information while omit-

ting peripheral details. A strong data reduction technique of mu-

sic signals is the representation of the full signal spectra to ob-

served spectral peaks [14]. The usefulness of this approach stems

from at least two facts: it is largely known that resynthesis of har-

monic sounds from observed spectral peaks cause little changes in

human perception [44] and for harmonic sounds, spectral peaks

tend to appear at integer multiples of target fundamental frequen-

cies. Spectral peaks define the spectral envelope. As pointed out by

Duan et al. [15], significant peaks are required to be higher than

a baseline, a kind of noise floor so that peaks under such base-

line have high probabilities of being generated by noise. On the

other hand, it is widely known that for quantitative IR applications,

peaks of the IR spectrum are associated with characteristic vibra-

tions of specific functional groups and thus, their heights are pro-

portional to concentration of chemical species in samples [43,45].

Under these considerations, it follows that for qualitative IR ap-

plications, IR datasets may be characterized by spectral envelope

functions and that these functions may be valuable for extracting

potentially discriminative wavelengths, i.e., wavelengths associated

with harmonics of core fundamental frequencies.

2.1. Unsupervised learning of IR spectral envelope functions

Let us consider a IR dataset D containing m training sam-

ples, each sample characterized by n wavelengths, i.e., D = {d
j
i
, i =

1 . . . m, j = 1 . . . n}. The raw spectral envelope function E induced

by D (see Fig. 1(a)) is given by Eq. (1)

E
(
x j

)
= yj = max

i ∈ 1...m
d j

i
j ∈ 1 . . . n (1)

The raw spectral envelope function E is then processed for the

unsupervised identification of significant peaks. Hence, all wave-

lengths below a baseline b = median({y j, j = 1 . . . n}) are set to b

(see Fig. 1(b)); the choice of median rather than mean of E aims to

overcome the well-known sensitivity of the mean to outliers. As a

result, a truncated spectral envelope function E∗ is obtained

E∗(x j)

{
yj y j > b ∀ j ∈ 1 . . . n
b otherwise

The truncated spectral envelope function E∗ is then inspected

for the identification of the set P of wavelengths xp associated with

local maximums of E∗. In addition, the set M of wavelengths asso-

ciated with local minimums of E∗ is also computed.

2.2. Unsupervised identification of spectral windows

Taking into account the nature of the IR spectra, we expect that

broad peaks of the truncated spectral envelope function E∗ con-

tains important harmonics of core fundamental frequencies. Aim-

ing to accomplish a compact representation of the IR spectra, the

truncated spectral envelope function E∗ is used to guide the iden-

tification of significant spectral regions, hereafter called spectral

windows. For this purpose, the Windows from Envelope (WE) al-

gorithm (see Algorithm 1) is introduced.

Given a training IR dataset D, WE first computes the raw spec-

tral envelope function E (L.4), continues with a baseline b (L.6)

and then its truncated version E∗ with baseline b (L.8). From E∗,

the corresponding sets P of local maximums (L.13) and the set

M of local minimums (L.14) are computed. For each xp ∈ P, WE

identifies the spectral window (L.16) centered on xp with width

wp = (xr
p − xl

p) (see Fig. 1(c)), where xr
p and xl

p are respectively the

right and left closer wavelengths to xp where E∗ falls to Max[b,

decay∗E∗(xp)]. The decay parameter, 0 < decay ≤ 1, is used to con-

trol spectral window widths. For sharp E∗ peaks, very narrow spec-

tral windows are obtained despite the specific setting of the decay

parameter. The resulting set of spectral windows is further pro-

cessed for additional dimensionality reduction using the informa-

tion about local minimums of E* available in M. Hence, narrower

windows w∗
p (L.17) are obtained by performing descendant walks

from wavelengths xp until the first local minimum of E∗, if any, is

found, p = 1 . . . |P| (see Fig. 1(d)). Afterwards, the final set of spec-

tral windows F (L.19) is built from P and W∗.
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