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a b s t r a c t

One-class SVM is used for classification which distinguishes one class of data from the rest in the fea-

ture space. For the training samples coming from different sources with different quality, in this letter, a

reformulation of one-class SVM is proposed by simultaneously incorporating robustness and fuzziness to

improve the classification performance. Based on the proposed model, we derive the relationship between

the lower bound of fuzziness μmin and the upper bound of perturbation η in the input data. Specifically,

for a given η, only when the assigned fuzziness to the input data is larger than μmin, could the input

data be in full use and differentiated effectively. The experiments verify the mathematical analysis and

illustrate that the proposed model can achieve better classification performance.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

To solve one-class classification problems in many applications

(David and Duin [4]), one-class SVM (Schlkopf et al. [1]) is pro-

posed by extracting a hyperplane in a kernel feature space such

that a given fraction of training objects may reside beyond the hy-

perplane, at the same time the hyperplane has maximal distance to

the origin. It has been shown that one-class SVM provides better

performance than traditional learning machines in distinguishing

between a set of target objects and all other possible objects.

In the actual applications, noises will give rise to uncertain data.

In such a case, how to develop a classification model with resis-

tance to data perturbations is a critical issue. In the literature, the

robustness problem has been studied by reformulating the classi-

fication model with the bounded perturbation in the input data to

make the model robust to the uncertainty. In Trafalis and Alwazzi

[11], considering the bounded errors in the input data, the authors

investigated the stability of the linear programming SVM (LP-SVM)

solution and concluded that the SVM model was stable under that

case. Trafalis and Gilbert [10] proposed a new robust programming

formulations for the bounded perturbation and discussed the re-

lationship of the bounded perturbation and generalized margin. In

Huang et al. [5], a robust support vector regression (RSVR) method

with uncertain input and output data is studied, in which, linear

formulations robust to ellipsoidal uncertainty are also considered
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from a geometric perspective. However, in most of existing robust

models, the input training points are assumed to have the same

quality and the same process is applied to all of them, which is not

desirable when input points with different quality must be dealt

discriminately.

In order to differentially treat the training data with different

quality in the training process, the concept of fuzzy set theory is

incorporated into SVM (Lin and Wang [3]), in which, a fuzzy mem-

bership is assigned to each input point of SVM. The fuzzy mem-

bership here can be regarded as the attitude of the correspond-

ing training point toward one class in the classification problem.

Specifically, one-class SVM combined with the concept of fuzziness

in Hao [9], assigning each data point a membership value accord-

ing to its relative importance in the class. In Filippone et al. [7],

a fuzzy kernel clustering method was applied to one-class SVM.

However, in these models, robustness is not involved, and the re-

lationship between fuzziness and bounded perturbation is not well

investigated.

Considering that little research has been done to incorporate

both robustness and fuzziness simultaneously and discuss the re-

lationship between them, in this letter, a model introducing fuzzi-

ness and robustness to standard one-class SVM is proposed. Based

on the proposed model, the relationship between the fuzzy mem-

bership and the bounded perturbation is analyzed, and the lower

bound of fuzzy membership given the bounded perturbation is de-

rived.

The rest of this letter is organized as follows. A brief review of

the theory of one-class SVM is described in Section 2. In Section 3,

the one-class SVM model with fuzziness and robustness is refor-

mulated, and the relationship between the fuzzy membership and
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the perturbation bound is analyzed. Experiments are presented in

Section 4, and some concluding remarks are given in Section 5.

2. Review to standard one-class SVM

Suppose that the training data is

x1, x2, . . . , xN ∈ Rn, (1)

where N is the number of observations and Rn is the input data

set. Then a feature map �: Rn → F is defined as

〈φ(xi) · φ(x j)〉 = k(xi, x j), (2)

where 〈·〉 denotes the inner product, and k(xi, xj) is the kernel of xi

and xj (Schlkopf et al. [1]; Mller et al. [6]). For example, a Gaussian

kernel can be defined as

k(xi, x j) = e−q‖xi−x j‖2

. (3)

After being mapped into the feature space corresponding to the

kernel, the training data will be treated as belonging to one class,

while the origin will be treated as the only member of the second

class. The aim of one-class SVM is to separate the training data

from the origin with the maximum margin defined by the pair

(w∗, b∗) which is the solution of the following quadratic program

min
w∈F,ξi∈Rn,b∈R

1

2
‖w‖2 + C

N∑

i=1

ξi + b, (4)

s.t. 〈w · φ(xi)〉 + b ≥ 0 − ξi,

ξi ≥ 0, i = 1, . . . , N,
(5)

where ξi, i = 1, . . . , N, are nonzero slack variables which are the

measure of error in the one-class SVM and C is a predefined reg-

ularization parameter which is used to control the fraction of out-

liers (Mller et al. [6]).

With w∗ and b∗, a function f is defined as follows which takes

the value +1 in a small region capturing most of the data points

and elsewhere

f (x) = sgn((w∗ · φ(x)) + b∗). (6)

3. Robust one-class SVM with fuzziness

3.1. The proposed model

In this sub-section, we extend the standard one-class SVM by

introducing fuzzy and robust parameters to a robust and fuzzy

one-class SVM, which is called RF-SVM in the rest of this paper.

In our proposed model, linear classification is considered for

simplification. Suppose that the training points {xi, i = 1, . . . , N} are

subject to perturbation on each of their coordinates. In such a case,

each training vector xi is not longer a point belonging to the Rn,

but a training point set χ i which could be regarded as a sphere

with xi as center and ri(ri ∈ R) as radius.

Then, a fuzzy membership μi(0 ≤ μi ≤ 1) is assigned to each

training point set χi, i = 1, . . . , N. Thus the training data could be

extended as

(χ1,μ1), (χ2,μ2), . . . , (χN,μN), (7)

and the first set of constrains in (5) can be rewritten as

〈w · (xi + riui)〉 + b ≥ 0 − ξi,∀‖ui‖ ≤ 1, i = 1, . . . , N. (8)

where ui ∈ Rn, and riui represents the perturbation vector.

Assuming that there is not a priori information about the per-

turbation. Instead, a bound of the norm of each perturbation vector

riui(i = 1, . . . , N) with respect to the Lp norm is known. In this let-

ter, p = 2 is considered, and thus ‖ri‖ ≤ ηi, where ηi represents

perturbation bound for training point set χi, i = 1, . . . , N (Trafalis

and Gilbert [10]).

To find a feasible solution of (8) for every realization of the

bounded perturbation ηi, which is characterized as the robust fea-

sible solution, w should satisfy the following condition for every

i = 1, . . . , N (Trafalis and Alwazzi [11])

min‖ri‖≤ηi

〈w · (xi + riui)〉 + b + ξi ≥ 0,∀‖ui‖ ≤ 1, i = 1, . . . , N. (9)

Further, (9) could be reformulated into the following problem

as

minri,ui
〈w · riui〉,

s.t.‖ri‖ ≤ ηi,‖ui‖ ≤ 1.
(10)

According to Schwarz inequality we have

|〈w · riui〉| ≤ ‖w‖ · ‖riui‖ ≤ ‖w‖ · ‖ri‖ ≤ ηi‖w‖.

To consider the worst case, we replace 〈w · riui〉 by its minimum

value −ηi‖w‖. Then we have the linear classification problem with

robustness and fuzziness as follows

min
w∈F,ξi∈Rn,b∈R

1

2
‖w‖2 + C

N∑

i=1

μiξi + b, (11)

s.t.〈w · xi〉 + b − ηi‖w‖ ≥ 0 − ξi ∀ξi ≥ 0, i = 1, . . . , N. (12)

The above optimization problem could be solved after being

converted to a Second Order Cone Programming (SOCP). When

primal-dual interior point methods are adopted, the computation

complexity of SOCP is O(
√

νln 1
ε ) with objective function within ε

of the optimal value, and ν being a parameter of the cone (Nes-

terov and Todd [13]).

Next, when consider the case that one-class SVM is imple-

mented generally in a kernel feature space, in which φ(χi) =
φ(xi) + Ri, and ‖Ri‖ ≤ ηi, i = 1, . . . , N , the problem in (11) and (12)

can be extended to a nonlinear one-class classification as

min
w∈F,ξi∈Rn,b∈R

1

2
‖w‖2 + C

N∑

i=1

μiξi + b, (13)

s.t. 〈w · φ(xi)〉 + b − ηi‖w‖ ≥ 0 − ξi,

ξi ≥ 0, i = 1, . . . , N.
(14)

Based on the objective function and the constraints described

in (13) and (14), we will derive the relationship between the fuzzy

membership and perturbation bound in the next sub-section.

3.2. Analysis of the relationship between fuzzy membership and

perturbation bound

If we use a Gaussian kernel in (3), any data set is separable after

it is mapped into the feature space according to Mller et al. [6]. A

theorem is then derived based on the data set with perturbation

{χ1, χ2, … , χN} as follows.

Theorem 1. If the data set is separable, given the perturbation bound

η, the fuzzy membership μ has a lower bound

μmin = −b

N · C · (Xφ(a) + η)2
. (15)

where N is the number of the training points, C is an predefined reg-

ularization parameter, b represents the intercept of the optimal super-

plane, Xφ(a) = max{‖φ(xi)‖, i = 1, . . . , N} and φ(xi) is a feature map

of xi.

Proof. For the convenience of discussion, the linear program in

(11) and (12) is used to analyze the relationship between the

fuzzy membership and perturbation bound. However, the conclu-

sion could be extended to the feature space formulated in (13) and

(14).
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