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a b s t r a c t

In this paper, we propose a mixture model selection criterion obtained from the Laplace approximation of

marginal likelihood. Our approximation to the marginal likelihood is more accurate than Bayesian informa-

tion criterion (BIC), especially for small sample size. We show experimentally that our criterion works as

good as other well-known criteria like BIC and minimum message length (MML) for large sample size and

significantly outperforms them when fewer data points are available.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Mixture modeling is a powerful statistical technique for unsuper-

vised density estimation especially for high-dimensional data. Be-

cause of its usefulness as an extremely flexible method of modeling,

finite mixture models have received increased attention over years

with applications on pattern recognition, computer vision, signal and

image processing, machine learning, and so forth [4,17,20,23].

Mixture models divide the entire space of data to several regions

and each region is modeled by a probability density which is usu-

ally chosen from a class of similar parametric distributions. In mix-

ture density estimation this division is soft, meaning that each datum

may belong to several components [15]. In clustering applications the

division is hard, that is each datum is assigned to only one cluster.

Therefore, mixture models are applicable to clustering applications

through probabilistic model-based approaches [14,20,21].

An important issue in mixture modeling is the selection of the

number of mixture components [20]. Too many components may

over-fit the observations, meaning that it can fit the training data

accurately but it may not be a good model for underlying data-

generating process. On the other hand, too few components may not

be flexible enough to approximate the underlying model.

Different approaches have been proposed in the literature for de-

termining the number of mixture components [21]. Some criteria
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select the number of components based on the generalization per-

formance of the model. This is done either by having a separate val-

idation set for testing performance [29], or by deriving asymptotic

bias for goodness-of-fit as done in AIC measure [1]. Some other crite-

ria like BIC use Bayesian framework in model selection, meaning that

they try to find a model that has the maximum posterior probability

or maximum marginal likelihood under some regularity conditions

[11,28].

Integrated Complete Likelihood (ICL) is another criterion that like

BIC approximates the marginal likelihood. ICL performs poorly when

mixture components overlap and tends to underestimate the num-

ber of components [10]. As predicted from the theory behind ICL and

shown in experiments, this criterion works well for the cases where

each datum is assigned to only one cluster, that is in clustering appli-

cations [2].

Mixture model selection has remained a topic of active research

until recently. Xie et al. [33] used an adaptive method that inves-

tigates the stability of log characteristic function versus number of

components to find the true model. Their method proved to be suit-

able for large sample sizes. Zeng and Cheung [34] suggested a model-

based clustering algorithm which uses a modified version of MML

for model selection. Their method is tailored to clustering applica-

tions and also requires sufficiently large sample sizes. Maugis and

Michel [19] suggested a non-asymptotic penalized criterion for mix-

ture model selection. Their method needs compute a quantity named

bracketing entropy which is not easily obtainable for non-Gaussian

components.

We propose a criterion for determining the number of compo-

nents of mixture models that is based on Laplace approximation

to the marginal likelihood. BIC criterion can be also viewed as the
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asymptotic Laplace approximation neglecting the terms that does not

grow with the number of components. Instead of neglecting those

terms, we assume the components are well-separated and derive a

different approximation. It turns out that our approximation works

better in many simulations.

We summarize the contributions of this paper as follows:

1. Under the assumption of non-overlapping components, we derive

a new model selection criterion.

2. We show through different experiments that violating well-

separateness assumption of components does not have a detri-

mental effect on the performance. Our criterion actually works

significantly better than other criteria even for the case of over-

lapping components.

The rest of the paper is organized as follows: We first review the

concepts related to mixture model parameter estimation in Section 2.

Popular model selection techniques are summarized in Section 3. We

describe the derivation of our proposed method in Section 4. The sim-

ulation results and comparisons are given in Section 5. Finally, we fin-

ish the paper by a short conclusion and envisioning future directions

of research in Section 6.

2. Mixture models

In this section, we discuss some basics of mixture models, for in

depth treatment of this subject, see [20,21]. The density of a mixture

of K components assumes the form

∀x ∈ R
c, p(x|�) =

K∑
m=1

πm p(x|θm), (1)

where π1, . . . , πK are the mixing probabilities coming from the

K-dimensional probability simplex, i.e.
∑K

m=1 πm = 1, and θm is

the set of parameters defining mth component. The variable � =
{θ1, . . . , θK , π1, . . . , πK} indicates the complete set of parameters of

the mixture model.

Let X = {x(1), . . . , x(n)} be the set of n i.i.d samples from the un-

derlying distribution, the log-likelihood over this set is given by:

log p(X |�) = log

n∏
i=1

p(x(i)|�) =
n∑

i=1

log

K∑
m=1

πm p(x(i)|θm) .

The set of parameters that maximizes the log-likelihood function

is called maximum likelihood (ML) estimate and is given by

�̂ML = argmax
�

{log p(X |�)} . (2)

Assuming a prior p(�) over the parameter set and maximizing

the posterior likelihood over the parameters results in maximum a

posteriori (MAP) estimate which takes the form

�̂MAP = argmax
�

{log p(X |�) + log p(�)} . (3)

2.1. Maximum likelihood solution

The common procedure for solving the optimization problems in

(2) and (3) is expectation-maximization (EM) algorithm [20,24]. De-

spite its fast convergence, simple EM suffers from one main drawback

and it is the problem of converging to a local maximum. We observed

that simple strategies like multiple initialization are not able to solve

the local maxima problem. To this end, we implemented the well-

known split and merge EM (SMEM) algorithm of [31] that nicely ad-

dresses this problem.1

1 The toolbox developed by our group can be downloaded from http://visionlab.ut.

ac.ir/mixest .

ML estimation procedure does not return reasonable estimate of

the parameters when the log-likelihood of mixture model is un-

bounded. Intuitively, this happens when one component gets small

number of data but its log-likelihood becomes infinite. Several possi-

ble remedies have been proposed in the literature [6,12]. One of the

simplest and most powerful of them is using a suitable prior on the

parameter space, that is estimating MAP instead of ML [11]. Accord-

ingly, in all of our experimental results, the parameters of mixture

models are estimated using MAP estimator.

3. Previous model selection criteria

The aim of model selection is selecting a model in the hypothesis

space that best describes the underlying distribution of the observed

data. For the case of mixture models, each hypothesis corresponds to

a mixture with specific number of components. There are two main

classes of model selection procedures: deterministic and stochastic.

Deterministic methods are commonly used for determining the num-

ber of components in mixture models and are the main focus of the

current paper.

3.1. Deterministic methods

Given a set of models in the hypothesis space, deterministic pro-

cedures select the model with the optimum information criterion.

Information criterion is a function of data log-likelihood at the ML

solution and the model complexity represented as

IC(�̂,X ) = −α log p
(
X |�̂)

+ β F(�̂),

where function F(�̂) represents model complexity and is indepen-

dent of the observed data. Also, α, β ≥ 0 are the weights determining

the influence for each of these opposing terms. Normally, in the case

of mixture models F(�̂) increases by increasing the number of com-

ponents penalizing complex mixture models with more components.

3.1.1. Akaike Information Criterion. Let q(.) be the true data-generat-

ing density and p(.|�) be a parametric model density. The expected

bias between the log-likelihood of the training data evaluated at ML

solution and expected logarithm of the model density evaluated at its

maximum �0 is written as

Eq

[
log p

(
X |�̂)

− Eq

(
log p

(
x|�0

))]
,

and can be used as a measure of complexity. If the number of data

points go to infinity, Akaike [1] derived an analytic form for this bias.

He proved that the bias term is equal to the number of parameters.

Thus, the bias corrected log-likelihood called Akaike Information Cri-

terion (AIC) which is defined as

AIC = −2[log p(X |�̂) − b] = −2 log p(X |�̂) + 2 d ,

can be used for model selection. Here, d is the dimensionality of the

parameter space.

3.1.2. Corrected Akaike Information Criterion. The bias used in AIC is

not accurate in the case of finite number of data points. However, in

practice it has been used and has been an effective criterion for model

selection. The only special case that the bias can be calculated analyt-

ically for finite sample size is the linear regression model. In this case,

the corrected version of the information criterion becomes

AICc = −2 log p(X |�̂) + 2
n

n − d − 1
d

that takes the number of data points n into account as proposed in

[13].
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