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Recently, results from sparse approximation theory have been considered as a means to improve the general-

ization performance of kernel-based machine learning algorithms. In this paper, we present Kernel Subspace

Pursuit (KSP), a new method for sparse non-linear regression. KSP is a low-complexity method that iteratively

approximates target functions in the least-squares sense as a linear combination of a limited number of el-

ements selected from a kernel-based dictionary. Unlike other kernel methods, by virtue of KSP’s algorithmic

design, the number of KSP iterations needed to reach the final solution does not depend on the number of

basis functions used nor that of elements in the dictionary. We experimentally show that, in many scenarios

involving learning synthetic and real data, KSP is less complex computationally and outperforms other kernel

methods that solve the same problem, namely, Kernel Matching Pursuit and Kernel Basis Pursuit.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

For decades, non-linear regression models have been extensively

studied in the area of statistics, econometrics and machine learning.

Quite often these models involve a non-linear transformation of data

into a high-dimensional space in which linear regression models are

expected to be more accurate compared to the original space. Ex-

amples include Artificial Neural Networks [9], Decision Trees [9] and

Support Vector Machines (SVMs) [3].

An important family of non-linear regression methods is kernel

methods [19] that have received major attention in the past two

decades, as they allowed non-linear versions of conventional linear

supervised and unsupervised learning algorithms, yielding impres-

sive regression performance. Using the kernel trick, interesting “ker-

nelized” extensions of many well-known algorithms were presented,

including kernel SVMs [19], kernel Principle Component Analysis

(PCA) [18] and kernel Fisher discriminant analysis [11].

The generalization, or “out-of-sample,” performance of a learning

method, including kernel methods considered in this work, quantifies

its ability to predict on independent never-seen-before data. From

a learning-theoretic perspective, controlling the “capacity” of learn-

ing algorithms is necessary to guarantee good generalization perfor-

mance [23]. This in turn is related to the issue of overfitting: the
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more complex a model is, the more likely it is to overfit the data.

Traditional non-parametric kernel regression methods such as the

Nadaraya-Watson method [12,25] affect generalization performance

through tuning parameters (such as the kernel bandwidth), which

could be viewed as a way of controlling model complexity. Recently,

results from sparse approximation theory [7] have been considered

as another means to directly control the model complexity and, con-

sequently, limit overfitting. Sparse approximation refers to estimat-

ing a vector (or function) as a linear combination of a small number

of elements selected from a larger set, called dictionary, of vectors

(or functions). In our regression context, we can control model com-

plexity by restricting the regression function to be sparse, i.e., that

it is a linear combination of a fixed (but small) number of functions

selected from a given dictionary.

1.1. Related work

Previous work has discussed interesting connections between

non-linear kernel-based learning and pursuit algorithms [10]. Pursuit

algorithms, are a family of greedy, iterative approaches to obtain

sparse approximations of a function. Poggio and Girosi relate in their

work [15] the basis pursuit algorithm [2] to kernel SVMs. The work

of Smola and Schölkopf [20] presents ties between the Matching

Pursuit (MP) algorithm [10] and kernel PCA, and shows how such ties

can be used to compress the kernel matrix in SVMs to allow dealing

with large datasets. Also, Smola and Bartlett present in [21] a greedy

MP-like technique that approximates Maximum A Posteriori (MAP)

estimates of Gaussian Processes by expressing the MAP estimate

as an expansion in terms of a small subset of pre-specified kernel

functions.
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Following this previous work, Kernel Matching Pursuit (KMP) [24]

and Kernel Basis Pursuit (KBP) [8] were presented as kernel meth-

ods that learn target functions by means of sparse approximation.

KMP adopts a greedy suboptimal iterative approach to construct a

sparse linear approximation of the target regression function. It starts

with the approximation being initialized to zero, and then builds it by

adding to it, at each iteration, a new term consisting of an appropri-

ately weighted function from the dictionary. The function is chosen

according to a correlation-based criterion and then, the correspond-

ing weight is computed so that the approximation error at that iter-

ation is minimized. KBP, on the other hand, solves a relaxed version

of the same problem by incorporating �1-regularization on the min-

imization of the approximation error. In doing so, KBP controls the

sparsity of the solution. The problem formulation in KBP corresponds

to the well-known Least Absolute Shrinkage and Selection Operator

(LASSO) formulation [22] in the feature space which combines an �2-

loss function (squared error) with �1-regularization. While previous

work (e.g., [2] that inspired KBP) considered finding the optimal solu-

tion to the minimization problem through costly and complex linear

programming techniques, KBP uses the Least Angle Regression (LARS)

technique [6] which also finds the exact solution of the LASSO but in

an iterative and efficient way.

In summary, KBP and KMP attempt to solve similar problems

while addressing the sparsity of the solution in different ways. In-

deed, KMP guarantees that the solution is K-sparse by imposing a pre-

specified finite number K of basis functions that will be used to con-

struct the approximation function. On the other hand, KBP, in its orig-

inal formulation, uses a regularization term that controls the sparsity

of the solution. In addition, both KMP and KBP suffer, computation-

ally, from the same drawback: the number of iterations that they have

to run directly depends on the intended number of basis functions in

the final solution.

Other work in the literature has addressed similar problems. In

[16], a stochastic version of KMP is presented for large datasets. In

this sub-optimal version of KMP, at a given iteration, the search space

from which basis functions are selected is reduced. More specifically,

a basis function is selected from a randomly chosen subset of the

available basis functions. The work in [13] presents a family of greedy

algorithms for building sparse kernel-based regression and classifi-

cation models. An �2-loss function is iteratively minimized until a

specified stopping criterion is satisfied. Different greedy criteria for

basis selection from the literature are discussed and two numerical

schemes are presented for updating the weights and residue (approx-

imation error), the first based on residual minimization and the other

based on QR factorization.

1.2. Main contribution

Our research effort aims at identifying an alternative framework

to KMP and KBP, one that would: (1) address the need to dissociate

(to the extent possible) kernel-based learning algorithms from the

computational constraints from which KMP and KBP suffer (i.e., the

dependency of the number of iterations on the number of basis func-

tions), and (2) still provide us with the control of the sparsity of the

solution. Thus, we apply the Subspace Pursuit (SP) algorithm of Dai

et al. [4] to non-linear regression problems, and introduce the Kernel

SP (KSP) algorithm. SP was first introduced in the context of com-

pressive sensing. It was originally proposed as an iterative method

for the reconstruction of an unknown sparse signal from a set of lin-

ear measurements. In our work, we capitalize on the fact that SP is, in

essence, a low complexity method to obtain least-squares solutions

with a pre-specified sparsity level.

As in KMP and KBP, the proposed algorithm iteratively learns a re-

gression function with a predefined sparsity level. In contrast to both

KMP and KBP that start by initializing the regression function to zero,

and then iteratively expand it until it reaches the desired sparsity

level, KSP always maintains an estimate of the regression function

built using the pre-specified number K of dictionary elements, and

refines the estimate through a usually limited number of iterations.

To build the regression function, KMP and KBP (using the LARS imple-

mentation) need a number of iterations equal to the desired number

of basis functions in the expansion. However, the number of KSP it-

erations needed to reach the final solution does not depend on the

required number of basis functions and is normally smaller than in

KMP and KBP. We experimentally show that in various scenarios that

involve learning synthetic and real data, this required number of KSP

iterations is indeed much smaller than that required for KMP and KBP,

and that in many of these scenarios, KSP is less computationally in-

tensive than KMP and KBP. We further present experimental valida-

tion that shows that, in most of these learning scenarios, KSP outper-

forms both KMP and KBP in the task of learning real and synthetic

data.

The remainder of this paper is organized as follows: In Section 2,

we formulate the problem considered in this work. In Section 3, we

introduce the Kernel Subspace Pursuit algorithm. In Section 4, we

compare the computational overhead for running KSP, KMP and KBP

in various scenarios involving learning synthetic and real data. We

also present the results of simulations showing that our algorithm

outperforms both KMP and KBP in most of these learning scenarios.

Finally, Section 5 concludes the paper.

2. Problem formulation

We are given L noisy observations {y1, . . . , yL} of an unknown

target function f : R
d �→ R at the inputs {x1, . . . , xL} where xi ∈ R

d

(for a given d) and yi ∈ R,∀i. Let k : R
d × R

d �→ R be a positive

definite kernel and let H be the associated kernel Hilbert space

whose norm is denoted by ‖ · ‖2
H . We are interested in identifying

a function f̂ ∈ H that is a good (in some sense) approximation of

f. According to the Representer Theorem [17], given a strictly in-

creasing function � : [0,∞) �→ R and an arbitrary cost function c :

(Rd × R
2)L �→ R ∪ {∞}, any minimizer f̂ ∈ H of the regularized cost

c((x1, y1, f̂ (x1)), . . . , (xL, yL, f̂ (xL))) + �(‖ f̂‖2
H) has the form

f̂ (x) =
L∑

i=1

αik(x, xi), αi ∈ R. (1)

That is, f̂ can be written as a linear combination of the elements of

the set G containing L functions in H:

G = {gi = k(·, xi)|i = 1, . . . , L} ⊂ H. (2)

Borrowing terminology from Sparse Approximation theory [7], we re-

fer to G as the dictionary and to its elements as atoms.

In this paper, the goal is to approximate f using a given number

K < L of dictionary atoms, called basis functions, that is, we want our

solution to admit the form in (1) but we now add the constraint that

only K of the coefficients αi are non-zero. In other words, we are inter-

ested in constructing an approximation f̂K of f as a linear combination

of K atoms gγi
, i = 1, . . . , K:

f̂K(x) =
K∑

i=1

αigγi
(x) =

K∑

i=1

αik(x, xγi
) (3)

where {γ1, . . . , γK} are the indices of the selected atoms and

α1, . . . , αK are the corresponding coefficients. Given that K is smaller

than L, we talk of a sparse approximation of f.

Let ŷ be the vector consisting of the evaluation of f̂K at the L input

vectors, i.e., ŷ = [ f̂K(x1), . . . , f̂K(xL)]T . We also define the residue as

the approximation error between the target vector y = [y1, . . . , yL]T

and ŷ, i.e.,

r = y − ŷ. (4)
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