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a b s t r a c t 

Noise level is an important premise of many image processing applications. This letter presents an auto- 

matic noise estimation method based on local statistic for additive white Gaussian noise (WGN). Analysis 

of the distribution of local variance shows that when local variances are not greater than the threshold 

that satisfies a special condition, their average is always linearly correlated with the real noise variance. 

Thus the actual noise variance can be obtained from these patches. Based on this idea, this letter provides 

an iterative process to select flat blocks, and estimates noise variance from these homogeneous patches 

using principal components analysis. Addressing challenges in noise estimation has major contributions 

to (1) studies on the distribution of local statistic and (2) an iterative process for choosing flat patches, 

which is the fundamental work of patch-based methods. The experiment results show that the proposed 

algorithm works well over a large range of visual content and noise conditions, and performs well in 

multiplicative noise. Compared with several conventional noise estimators, it yields best performance 

and faster running speed. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Digital images can be easily distorted by noise during captur- 

ing, processing and transmission. Many image and video process- 

ing algorithms, such as de-noising [6,10] , compression [31] , seg- 

mentation [24] and image quality assessment [14,32] , need to be 

corrected according the noise variance, but it is not always avail- 

able in practice. Thus, accurate and reliable blind noise estimation 

becomes an important research topic. 

The key of noise estimation for a single image is how to prepare 

an ideal dataset for noise estimation. Based on how to choose the 

dataset, the existing noise estimation methods can be mainly clas- 

sified into three categories: transform-based methods, filter-based 

methods and patch-based methods. 

In the transform-based methods, the input image is first trans- 

formed into domains which are then used for noise estimation. 

The methods proposed in [7,15] use the wavelet transform to iso- 

late the noise information in the first diagonal band coefficients, 

and then estimate noise level from the absolute value of these 

coefficients, but these methods tend to overestimate in high fre- 

quency images (images with strong structures). The algorithms in 
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[18,19] estimate noise variance in singular value decomposition do- 

main. These methods divide the singular values into two parts 

and assume that the part contributed by noise-free image is fixed. 

However, this part maybe changes with noise variance, especially 

for those images with low noise level or high frequency. As a re- 

sult, these methods tend to overestimate the noise when noise 

variance is small or image includes abundant features. Ghazi and 

Erdogan [9] estimate noise level via matching moments of coeffi- 

cients in discrete cosine transform (DCT) or discrete wavelet trans- 

form (DWT) domains, but DCT and DWT are difficult to completely 

separate image signal from the observed image. 

The filter-based algorithms filter the image with a low-pass fil- 

ter at first and then estimate the noise variance using the differ- 

ence between the noisy image and the filtered image [17,25,28] . 

The main challenge is that the difference between the images is 

assumed to be the pure noise but this assumption is not held in 

general, because a low-pass filtered image is not the ground truth 

image, especially for an image with strong structures. Therefore, 

most filter-based approaches perform well for image with less tex- 

ture, but tend to overestimate the noise in high frequency images 

[12,23] . 

In the patch-based approaches, the noisy image is tessellated 

into many patches and the noise variance is estimated using a 

set of specifically chosen homogeneous patches [11,29] . Different 

patch-based methods are different in how to choose flat patches. 

Ajá-Fernandez et al. [2] estimates noise from the mode of local 
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statistics with premise that most image patches are flat, which 

does not always hold in practice. In methods [20,26] , the noise 

level is estimated as the smallest eigenvalue of the homogeneous 

patch covariance matrix. However, the minimal eigenvalue is usu- 

ally smaller than the true noise variance if there are a few chosen 

flat blocks. Chen et al. [5] construct the covariance matrix by using 

all image blocks in three color channels, so that it maybe fails in 

some gray-level images. Ant colony optimization technique is used 

to select uniform blocks in [30] , nevertheless, it consumes huge 

computational complexity. Amer and Dubois first select the most 

homogeneous patches by using a Laplacian operator, then take the 

blocks with local variances close to the selected block as uniform 

areas [3] . This method is accurate for high frequency image, but it 

has low reliability and tends to underestimate. The improved ap- 

proaches are also based on the most uniform block with very small 

local variance, hence, they cannot absolutely avoid underestimation 

[8,13] . 

If images are degraded by additive Gaussian noise, the analysis 

for the probability density function ( pdf ) of local variance shows 

that there must exist a unique set of homogeneous patches with 

smaller local variances and the average of these local variances is 

always linearly correlated with the real noise variance. That is to 

say, we can get the actual noise level from these homogeneous 

patches. Based on this idea, this letter presents a novel noise es- 

timation method which does not underestimate for low structure 

images, but also works well for high frequency images. 

The rest of this letter is arranged as follows: Section 2 anal- 

yses the local statistic and describes the proposed noise esti- 

mation method. Section 3 simulates the proposed method and 

compares the proposed method with some classical approaches. 

Section 4 concludes this letter. 

2. Noise estimation algorithm 

In this section, the local variance of patch is analyzed, an iter- 

ative process to extract flat blocks is provided, and the noise level 

is evaluated by using principal components analysis. 

2.1. Local variance 

If the noise-free image s is distorted by a zero-mean additive 

WGN η with variance σ 2 , the noisy image v is 

v = s + η (1) 

Suppose that P W 

= { v i j ; i = 1 , . . . , W, j = 1 , . . . , W } is a W × W 

sample block over the noisy image, the local variance is 

σ 2 
P = 

∑ 

v i j ∈ P W 
(v i j − μ) 2 / (W 

2 − 1) (2) 

where μ is the average intensity of pixels in patch P W 

. 

Because homogeneous patch contains only pure noise, there is 

(W 

2 − 1) σ 2 
P 
/σ 2 ∼ χ2 (r)(r = W 

2 − 1) for a flat patch, where χ2 ( r ) 

is a chi-square with r degrees of freedom [21] . Therefore, the dis- 

tribution of σ 2 
P 

is Gamma distribution with the shape parameter 

r /2 and the scale parameter 2 σ 2 / r , i.e. σ 2 
P 

∼ γ (r / 2 , 2 σ 2 /r ) , whose 

pdf is 

f (x ) = 

⎧ ⎨ 

⎩ 

1 

�(r/ 2) 
x 

r 
2 −1 ( 

r 

2 σ 2 
) 

r 
2 e −

r 

2 σ2 x , x ≥ 0 

0 , otherwise 

(3) 

where �( ·) denotes the Gamma function. The mean of σ 2 
P 

turns 

out to be the variance of noise, i.e. , 

E(σ 2 
P ) = 

r 

2 

× 2 σ 2 

r 
= σ 2 (4) 

Table 1 

Different λ and ρ according to δ. 

δ W = 5 W = 7 W = 9 

λ ρ λ ρ λ ρ

0.7 1.3267 0.8510 1.2240 0.8956 1.1707 0.9196 

0.8 1.3807 0.8918 1.2613 0.9248 1.1992 0.9424 

0.9 1.4758 0.9327 1.3261 0.9569 1.2482 0.9672 

where E ( ·) denotes the expectation. This is the reason why we usu- 

ally estimate the noise by averaging the local variances. 

For homogeneous blocks, we can get the following theorem 

Theorem 1. There must exist a unique ˜ σ 2 ( ̃  σ > 0 ) such that 

˜ σ 2 = E(σ 2 
P 

∣∣σ 2 
P ≤ λ ˜ σ 2 ) (5) 

˜ σ 2 = ρσ 2 (6) 

with 

ρ = 

∫ F −1 (δ,r / 2 , 2 /r ) 
0 xz(x ) dx 
∫ F −1 (δ,r / 2 , 2 /r ) 

0 z(x ) dx 
(7) 

λ = F −1 (δ, r/ 2 , 2 /r) /ρ (8) 

where z(x ) = σ 2 f (σ 2 x ) represents the pdf of γ ( r /2, 2/ r ), F −1 (·) is 

the inverse Gamma cumulative distribution function with r /2 shape 

parameter and 2/ r scale parameter, and δ, which is a given signifi- 

cance level, denotes the probability of that local variance is no more 

than λ ˜ σ 2 , i.e. , P (σ 2 
P 

≤ λ ˜ σ 2 ) = δ ( P ( ·) represents the probability ). 

Proof. Since δ is known, i.e. , 

P (σ 2 
P ≤ λ ˜ σ 2 ) = δ (9) 

we have 

P (σ 2 
P /σ

2 ≤ λ ˜ σ 2 /σ 2 ) = δ (10) 

It is easy to know σ 2 
P 
/σ 2 ∼ γ (r / 2 , 2 /r ) , then 

λ ˜ σ 2 /σ 2 = F −1 (δ, r/ 2 , 2 /r) (11) 

For the similar reason, one can obtain 

E(σ 2 
P 

∣∣σ 2 
P ≤ λ ˜ σ 2 ) = σ 2 E(σ 2 

P /σ
2 
∣∣σ 2 

P /σ
2 ≤ λ ˜ σ 2 /σ 2 ) 

= σ 2 

∫ F −1 (δ,r / 2 , 2 /r ) 
0 xz(x ) dx 
∫ F −1 (δ,r / 2 , 2 /r ) 

0 z(x ) dx 
(12) 

Defining ρ= 

∫ F −1 (δ,r / 2 , 2 /r ) 
0 xz(x ) dx/ 

∫ F −1 (δ,r / 2 , 2 /r ) 
0 z (x ) dx, Eq. (12) 

is 

E(σ 2 
P 

∣∣σ 2 
P ≤ λ ˜ σ 2 ) = ρσ 2 (13) 

Based on Eqs. (11) and (13) , there is 

˜ σ 2 = F −1 (δ, r/ 2 , 2 /r) σ 2 /λ

= (F −1 (δ, r/ 2 , 2 /r) /ρ) /λE 
(
σ 2 

P 

∣∣σ 2 
P ≤ λ ˜ σ 2 

)
(14) 

Supposing λ = F −1 (δ, r/ 2 , 2 /r) /ρ, the following is obtained 

from Eqs. (13) and (14) 

˜ σ 2 = E(σ 2 
P 

∣∣σ 2 
P ≤ λ ˜ σ 2 ) = ρσ 2 (15) 

Since δ is a given constant, ρ and λ are constants also. Thus, 

˜ σ 2 is unique and linearly correlated with σ 2 . With different patch 

size, the λ and ρ according to the δ are shown in Table 1 . �

Theorem 1 means that we can get the actual noise vari- 

ance from all the homogeneous blocks with local variances no 

more than λ ˜ σ 2 , where ˜ σ 2 is the average of their local variances. 

It can work well for high structure image because many non- 

homogeneous patches with greater than λ ˜ σ 2 local variances are 

rejected. 
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