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a b s t r a c t 

We present a novel dictionary learning (DL) approach for sparse representation based classification in 

kernel feature space. These sparse representations are obtained using dictionaries, which are learned us- 

ing training exemplars that are mapped into a high-dimensional feature space using the kernel trick. 

However, the complexity of such approaches using kernel trick is a function of the number of training 

exemplars. Hence, the complexity increases for large datasets, since more training exemplars are required 

to get good performance for most of the pattern classification tasks. To address this, we propose a hierar- 

chical DL approach which requires the kernel matrix to update the dictionary atoms only once. Further, in 

contrast to the existing methods, the dictionary is learned in a linearly transformed/coefficient space in- 

volving sparse matrices, rather than the kernel space. Compared to the existing state-of-the-art methods, 

the proposed method has much less computational complexity, but performs similar for various pattern 

classification tasks. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In recent years kernel sparse representation based classifier 

(KSRC) has been widely explored in various pattern classification 

and recognition tasks [30,32,34] . These kernel algorithms were ac- 

tually proposed to improve the performance of sparse represen- 

tation based classifier (SRC) [27,33] which uses the linear mod- 

eling framework, by exploiting the advantages of projecting data 

in some high-dimensional space [15] . However, linear represen- 

tations are inadequate for representing non-linear structures of 

the data which arise in many practical applications [32] . Hence, 

if an appropriate kernel function is utilized, then there is a high 

probability that similar features are grouped together in the high- 

dimensional space [34] . Linear modeling in the projected feature 

space can thus address the issue of non-linearity and provide bet- 

ter discrimination than their traditional counterparts in the origi- 

nal space. In addition, all KSRC based approaches can operate in a 

high-dimensional space without explicitly transforming the data in 

that space [15] . 

In KSRC, the aim is to obtain the sparse representation a t of a 

test feature vector x t which is mapped to some high-dimensional 

space, and classify it to the class that gives the smallest recon- 
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struction error [15] . Given a dictionary D̈ in higher dimensions 

(learned/build using class specific training data), the sparse vector 

is obtained by solving the following sparse coding problem [34] : 

argmin 

a t 

‖ φ(x t ) − D̈ a t ‖ 

2 
2 s . t ∀ i ‖ a i ‖ 0 ≤ T 0 , (1) 

where ‖ . ‖ 0 is the l 0 -norm (convex surrogates can also be used), T 0 
denotes the imposed limit on the cardinality of the sparse vector. 

Here, the transformation function φ : R 

n → S maps the input space 

to a high-dimensional Hilbert space S . However, in most cases the 

transformation φ is not known, and the optimization of problem 

in (1) is infeasible using traditional methods. This issue can be ad- 

dressed by using a kernel similarity function κ , which avoids the 

explicit mapping of training data to space S [30] . Let K( ̈D , ̈D ) be 

a kernel matrix whose elements are computed using kernel κ as 

κ(d i , d j ) = φ(d i ) 
T φ(d j ) . Similarly let K( ̈D , x t ) be a vector with el- 

ements κ( d i , x t ). Hence, (1) can be written as [34] : 

argmin 

a i 

κ(x t , x t ) + a T t K( ̈D , D̈ ) a t − 2 a T t K( ̈D , x t ) 

s . t ‖ a t ‖ 0 ≤ T 0 . 
(2) 

The challenge with such a formulation is that the dictionary 

atom d i in the original signal space corresponding to atom φ( d i ) in 

space S is unknown [30] . To address this issue, the training matrix 

(or its subset) can be used as the dictionary [34] . However, using 

φ(X) as the dictionary D̈ in KSRC is inefficient, especially when the 

number of training exemplars is very large [30,32] . For instance, 

(i) testing phase will be very slow, as determining sparse codes for 
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Table 1 

Matrix and vector dimensions. 

X φ( X ) D̈ B A d̈ i x i a i 

n × l ˜ n × l ˜ n × m l × m m × l ˜ n × 1 n × 1 m × 1 

dictionaries with more number of atoms is computationally expen- 

sive, prohibiting real-time application, and (ii) manually selecting 

a subset of the training data to seed the dictionary is not only te- 

dious but also sub-optimal since there is no guarantee that such 

selection form the best dictionary [18] . 

In order to address these issues, recent studies suggest in fa- 

vor of learning a dictionary instead of using the training data it- 

self [1,18,28,30,32] . The dictionary for each class is learned from its 

training signal set X ∈ R 

n ×l by minimizing the reconstruction er- 

ror and satisfying the sparsity constraints [30] . Existing dictionary 

learning (DL) algorithms available in the literature solves the fol- 

lowing optimization problem: 

argmin 

D̈ , A 

g(A ) subject to ‖ φ(X ) − D̈ A ‖ 

2 
F ≤ ε, (3) 

where ‖ . ‖ F is the Frobenius norm, g () is a function that promotes 

sparsity (e.g, l 0 -norm), ε is the error tolerance constant, D̈ ∈ R ̃

 n ×m 

is a dictionary in space S and A is the sparse coefficient matrix 

corresponding to the transformed training set φ(X) [31] . This non- 

convex problem is solved via alternative minimization in two steps 

i.e., sparse coding and dictionary update. The sparse coding prob- 

lem can be solved for each training similar to (2) . Once the sparse 

code for each exemplar is calculated, the dictionary can be up- 

dated such that the error, ‖ φ(X ) − D̈ A ‖ 2 F is minimized. DL gives 

a suitable number of discriminative atoms for each class spanning 

its signal space, but learning an optimal dictionary in space S is 

not straight forward as compared to signal space [30] . In [32] , it 

has been proved that the optimal solution for the dictionary D̈ 

has the form D̈ = PB = φ(X ) B . Here, P = φ(X ) is a better choice 

as compared to relying on any manual selection. Further, P acts as 

a known prior and a regularizer to reduce over-fitting and insta- 

bility while DL. In fact with this formulation, the dictionary atoms 

are linear combinations of the training exemplars instead of the 

training data itself. Thus, one can tune the dictionary of a class via 

modifying its corresponding sparse matrix B . To understand this, 

consider the objective function in (3) as: 

‖ φ(X ) − φ(X ) BA ‖ 

2 
F 

= ‖ φ(X )(I − BA ) ‖ 

2 
F 

= tr ( ( I − BA ) T K( X , X ) (I − BA ) ) 

(4) 

where K( X , X ) is the kernel matrix whose elements are computed 

as κ(x i , x j ) = φ(x i ) 
T φ(x j ) . Such a formulation is more efficient to 

solve, since it involves a kernel matrix of finite dimensions and a 

sparse matrix B , instead of dealing with a possibly very large or 

some high-dimensional dictionary D̈ . Here, some popular kernels 

such as linear, Gaussian and polynomial kernels can be employed 

[15] . For the reader’s convenience, Table 1 summarizes the dimen- 

sions of all important matrices and vectors. Parameters involving ˜ n 

are associated with the high-dimensional feature space. 

In order to solve (4) , both B and A are alternatively opti- 

mized with respect to the whole dictionary D̈ using the kernel 

trick. Hence, existing algorithms have large time complexity due 

to: (i) size of the dataset, (ii) overcompleteness of the dictionary, 

and (iii) density and size of the kernel matrix. In some cases ex- 

tracted features are such that the kernel matrix is sparse, and 

hence sparse matrix manipulation methods may be used. How- 

ever, in most cases the kernel matrix is dense, which leads to 

increased time complexity mainly for large scale learning tasks. 

This is because kernel methods typically construct a kernel ma- 

trix K ∈ R 

l×l where l is the number of training instances. Never- 

theless, the complexity of dictionary optimization using the kernel 

trick is therefore a function of the number of training exemplars, 

instead of the dimensionality of the input exemplars. Further, op- 

timizing B require the kernel matrix in each iteration of existing 

DL algorithms [32] . Although, to deal with large kernel matrices 

many methods have focused on computing its low-rank approxi- 

mation [2,9] , but the focus of this paper is to propose an effec- 

tive approach only for alleviating memory and computational cost 

for DL. 

In this work using the kernel trick, we show that alternative to 

(4) , one can define an objective function such that learning B (sep- 

arately for each class) is efficient and independent of any computa- 

tions involving the kernel matrix. This is achieved by learning the 

matrix B in the coefficient space rather than the signal or kernel 

space. For this, the kernel DL problem is transformed into a more 

suitable form to find a numerically stable solution, a process re- 

ferred to as preconditioning [25] . Note that, the sparse coding stage 

will still require the use of kernel matrix. In order to update the 

matrix B , the proposed algorithm uses a hierarchical subset selec- 

tion procedure. In each iteration, a column/atom of B is selected in 

accordance to its energy contribution, from the transformed train- 

ing exemplars in the coefficient domain. It is done in such a way 

that the information learned by the previously updated atoms can 

be used to guide an adaptive design of subsequent atoms. Thus, 

after each update the modified residual serves as the new training 

set for the next update i.e., any atom is learned in accordance to 

what was not learned using previous atoms. 

1.1. Related work 

In earlier works of [15,20,34] , the dictionaries used to compute 

the kernel sparse representation (based on l 1 -norm minimization) 

consists of exemplars from the transformed training exemplars. In 

addition, S being a very high-dimensional space, in [20] , the trans- 

formed exemplars are projected on to a reduced dimensionality 

subspace e.g., using principal component analysis (PCA). In con- 

trast, works in [32] and [30] , proposed to learn the dictionary by 

solving (4) using conventional DL approaches. In [30] , the matrix 

B is updated using multilevel dictionary learning (MDL) method 

[29] . While in [32] , B is updated based on Method of optimal di- 

rections (MOD) [12] or K-singular value decomposition (KSVD) [3] , 

and the sparse coding stage is solved using the modified kernel 

OMP (KOMP) algorithm. In [32] B is optimized separately for differ- 

ent classes, while in [30] a single B is learned for all classes, using 

an ensemble of kernel matrices, such that the class discrimination 

is maximum. It is important to note that, the kernel MDL (KMDL), 

kernel MOD (KMOD) or kernel K SVD (KK SVD) formulation is highly 

non-convex and hard to solve in a moderate amount of time [32] . 

KMOD/KKSVD suffers from similar drawbacks as MOD/KSVD i.e., 

high complexity of the matrix inversion and lack of convergence 

guarantees, respectively. Moreover, in all the existing methods op- 

timizing B require the kernel matrix in each iteration. 

These issues are addressed in the proposed DL approach since: 

(i) it does not involve the kernel matrix to update the dictionary in 

each iteration of the algorithm, (ii) dictionary update is efficient as 

it is performed in the coefficient domain involving sparse matrices, 

and (iii) dictionary update does not involve any computationally 

intensive operations such as SVD or matrix inversion which makes 

it faster. 

1.2. Organization of the paper 

The rest of the paper is organized as follows: In Section 2 we 

propose an efficient algorithm for kernel sparse DL problem. 
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