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a b s t r a c t

Two approaches for on-line Gaussian process regression with low computational and memory demands
are proposed. The first approach assumes known hyperparameters and performs regression on a set of
basis vectors that stores mean and covariance estimates of the latent function. The second approach
additionally learns the hyperparameters on-line. For this purpose, techniques from nonlinear Gaussian
state estimation are exploited. The proposed approaches are compared to state-of-the-art sparse
Gaussian process algorithms.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Gaussian processes (GPs) allow non-parametric learning of
regression functions from noisy data and can be considered Gauss-
ian distributions over functions conditioned on the data [13].
Unfortunately, due to their non-parametric nature, GPs require
computations that scale with Oðn3Þ for training, where n is the
number of data points.

In order to reduce the computational load, sparse approxima-
tions have been proposed in the recent years. In [12] a unifying
framework for so-called active set approaches has been derived.
Here, instead of processing the entire training data set, only a sub-
set of the data points—the active set with s� n data points—is
used. This framework comprises for instance the subset of regres-
sors [16], sparse on-line GP (SOGP, [2]), or sparse pseudo-input GP
(SPGP, [17]). Thanks to the sparse representation, the computa-
tional load is reduced to Oðs2 � nÞ or even to Oðs3Þ (see the approach
proposed in [4]).

GP regression can also be sped up by partitioning the training
data into separate data sets, where for each data set a separate
GP is learned (see e.g., [19,11]). For calculating the GP prediction,
the results of the separate GPs are combined. In contrast to active
set methods, partitioning approaches make use of the entire train-
ing data.

Most of the above approximations assume that the whole data
set is available a priori and thus, training can be performed off-line
in a batch mode. Only a few sparse approaches have been proposed
that allow sequential training of GPs for data that arrives on-line,

i.e., streaming data. In [2] for instance, a score value is assigned
to each element of the active set. If a new data point arrives, it is
added to the active set, while an element with the lowest score
is eliminated. For specific kernel functions, the approach proposed
in [3] transforms GP regression into a Kalman state estimation
problem that merely scales with OðnÞ. Unfortunately, this
approach so far is only applicable for one-dimensional inputs.

The approaches proposed in this paper allow for both a sparse
representation and on-line processing. For this purpose, the regres-
sion function is represented by means of a finite set of basis vectors.
Training with incoming data, i.e., updating mean and covariance
estimates featured by the basis vectors (Section 3) as well as simul-
taneously learning hyperparameters (Section 4), is performed
recursively via Bayesian state estimation techniques. After
updating the newly arrived data points can be discarded, while
the joint Gaussian state estimate of the regression function and
the hyperparameters is sufficient for prediction.

2. Problem formulation

For GP regression, it is assumed that a set of data
D ¼ ðx1; y1Þ; . . . ; ðxn; ynÞf g is drawn from the noisy process

yi ¼ g xið Þ þ �; ð1Þ

where xi 2 Rd are the inputs, yi 2 R are the observations or outputs,
and � � N ð0;r2Þ is zero-mean Gaussian noise with variance r2. For
brevity reasons, XD ¼ x1; . . . ; xn½ � are all inputs and y ¼ y1; . . . ; yn½ �T

are the corresponding observations in the following.
A GP is used to infer the latent function gð�Þ from the data D. The

GP is completely defined by a mean function m xð Þ , E g xð Þf g spec-
ifying the expected output value, and a positive semi-definite
covariance function k x; x0ð Þ , cov g xð Þ; g x0ð Þf g, which specifies the
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covariance between pairs of inputs and is often called a kernel. Typ-
ical examples are the zero mean function mðxÞ ¼ 0 and the squared
exponential (SE) kernel

kðx; x0Þ ¼ a2 � exp �1
2

x� x0ð ÞTK�1 x� x0ð Þ
� �

: ð2Þ

In (2) K ¼ diagðl1; l2; . . . ; ldÞ is a diagonal matrix of the characteristic
length-scales li for each input dimension and a2 is the variance of
the latent function g. Such parameters of the mean and covariance
functions together with the noise standard deviation r are called
the hyperparameters of the GP. In the following, all hyperparameters

are collected in the vector g 2 Rr , e.g., g ¼ a; l1; . . . ; ld;r½ �T compris-
ing the parameters of the SE kernel (2) and the noise standard devi-
ation. It is worth mentioning that the approach proposed in this
paper holds for arbitrary mean and covariance functions.

For any finite set of inputs a GP provides a multivariate Gauss-
ian distribution of the outputs. For example, the distribution of the
function value g� ¼ gðx�Þ for an arbitrary test input x� is a univari-
ate Gaussian with mean and variance

lg x�ð Þ ¼ Efg�g ¼ m� þ kT
�K
�1
x y�m
� �

;

r2
g x�ð Þ ¼ varfg�g ¼ k�� � kT

�K
�1
x k�;

ð3Þ

respectively. Here, varf�g is the variance, Kx , Kþ r2I, m� ,m x�ð Þ;
m ,m XDð Þ; k� , k XD; x�ð Þ; k�� , k x�; x�ð Þ, and K , k XD;XDð Þ is the
kernel matrix.

For GP prediction, i.e., for calculating the distribution for a given
set of test inputs according to (3), it is necessary to calculate the
kernel matrix K, to invert the matrix Kx, and to multiply Kx with
k�. Both the kernel matrix calculation and the multiplication scale
with O n2

� �
, while the inversion even scales with O n3

� �
. Thus, for

large data sets D, storing the kernel matrix and solving all calcula-
tions is prohibitive. The following recursive GP approach aims at
performing all calculations computationally very efficient on a
set of m� n so-called basis vectors.

3. On-line regression

We will now summarize our approach proposed in [5], which
focuses on performing on-line regression given a set of m basis vec-
tors. Let us assume that the hyperparameters are already known
and thus, have not to be learned from data. This assumption will
be avoided in Section 4. These basis vectors are located at
X , x1; x2; . . . ; xm½ � and store local estimates g , g Xð Þ of the latent
function gð�Þ. Thus, the basis vectors can be considered an active
set allowing a sparse GP representation. In contrast to most other
active set approaches, the basis vectors are updated on-line with
new observations yt at inputs Xt , xt;1; . . . ; xt;nt½ � and time step
t ¼ 0;1; . . ., which makes this approach well suited for streaming
data. Also off-line processing is possible by presenting the data in
D in batches to the algorithm.

For all steps t ¼ 0;1; . . . it assumed that the basis vectors are
fixed in number and location. Since gðxÞ is assumed to be a GP,

the initial distribution p0 g
� �

¼ N g;lg
0;C

g
0

� �
of g for t ¼ 0 is Gauss-

ian with mean lg
0 ,mðXÞ and covariance Cg

0 , k X;Xð Þ.
The goal is now to calculate the posterior distribution p gjy1:t

� �
,

with y1:t , y1; . . . ; yt

� �
, recursively by updating the prior distribu-

tion of g from the previous step t � 1

p gjy1:t�1

� �
¼ N g; lg

t�1;C
g
t�1

� �
with the new observations yt .

One might think of exploiting (3) for incorporating the new
observations. This however, is not suitable for recursive processing
for mainly three reasons. First, (3) merely allow a prediction for gi-
ven inputs and no incorporation of new information. Second, (3)
operates directly on the data D. To allow recursive processing with
constant time and memory, not the data D but a distribution

p gjy1:t�1

� �
sparsely representing D needs to processed. Third, no

correlation or cross-covariance between X and Xt is provided,
which however is of paramount importance for updating

p gjy1:t�1

� �
. Instead, for deriving a recursive algorithm, the desired

posterior distribution is expanded according to

p gjy1:t

� �
¼
Z

ct � p ytjg; gt

� �
� p gt jg
� �

� p gjy1:t�1

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{¼p g;gt jy1:t�1ð Þ ðinferenceÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼p g;gt jy1:tð Þ ðupdateÞ

dgt ð4Þ

in two processing steps: (inference) calculating the joint prior

p g; gtjy1:t�1

� �
given the prior p gjy1:t�1

� �
, which provides the re-

quired correlation information between X and Xt , and (update)
updating the joint prior with the observations yt . The second step

follows from applying Bayes’ law and integrating out gt , g Xtð Þ,
where ct is a normalization constant. The integration is required
for maintaining a constant number of basis vectors.

3.1. Inference

In order to determine the joint prior p g; gt jy1:t�1

� �
, the chain

rule for probability distribution is applied, which yields

p g; gtjy1:t�1

� �
¼ p gtjg

� �
� p gjy1:t�1

� �
ð5Þ

¼ N gt; lp
t ;B

� �
�N g;lg

t�1;C
g
t�1

� �
with

lp
t ,mðXtÞ þ Jt � lg

t�1 �mðXÞ
� �

; ð6Þ

B , kðXt ;XtÞ � Jt � kðX;XtÞ; ð7Þ

Jt , kðXt ;XÞ � kðX;XÞ�1
: ð8Þ

The first equality in (5) follows from assuming that gt is condition-
ally independent of the past observations y1:t�1 given g. As any finite
representation of a GP is Gaussian, this also holds for the joint prior.

Hence, the conditional distribution p gtjg
� �

is Gaussian as well and

results from the joint prior by conditioning on g (see for example
Chapter 2.6 in [8]), which results in the second equality.

After some algebraic transformations, where some basic prop-
erties of Gaussian distributions and the Woodbury formula is uti-
lized, the product in (5) yields the joint Gaussian

p g; gt jy1:t�1

� �
¼ N q; Q

� �
of g and gt with mean and covariance

q ,
lg

t�1

lp
t

" #
and Q ,

Cg
t�1 Cg

t�1JT
t

JtC
g
t�1 Cp

t

" #
; ð9Þ

respectively, and with covariance Cp
t , Bþ JtC

g
t�1JT

t . This inference
step coincides with the augmented Kalman Smoother proposed in
[15], but there no update step for basis vectors as introduced next
is derived.
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