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a b s t r a c t

In machine learning, the domain adaptation problem arrives when the test (target) and the train (source)

data are generated from different distributions. A key applied issue is thus the design of algorithms able to

generalize on a new distribution, for which we have no label information. We focus on learning classification

models defined as a weighted majority vote over a set of real-valued functions. In this context, Germain

et al. [1] have shown that a measure of disagreement between these functions is crucial to control. The core

of this measure is a theoretical bound—the C-bound [2]—which involves the disagreement and leads to a well

performing majority vote learning algorithm in usual non-adaptative supervised setting: MinCq.

In this work, we propose a framework to extend MinCq to a domain adaptation scenario. This procedure

takes advantage of the recent perturbed variation divergence between distributions proposed by Harel and

Mannor [3]. Justified by a theoretical bound on the target risk of the vote, we provide to MinCq a target

sample labeled thanks to a perturbed variation-based self-labeling focused on the regions where the source

and target marginals appear similar. We also study the influence of our self-labeling, from which we deduce

an original process for tuning the hyperparameters. Finally, our framework called PV-MinCq shows very

promising results on a rotation and translation synthetic problem.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, due to the expansion of Internet a large amount of data

is available. Then, many applications need to make use of supervised

machine learning methods able to transfer knowledge from different

information sources, which is known as transfer learning.1 In such a

situation, we cannot follow the strong standard assumption in ma-

chine learning that supposes the learning and test data drawn from

the same unknown distribution. For instance, one of the tasks of the

common spam filtering problem consists in adapting a model from

one user to a new one who receives significantly different emails. This

scenario, called domain adaptation, arises when we aim at learning

from a source distribution a well performing model on a different

target distribution, for which one considers an unlabeled sample (or

few labels).2 In this paper we design a new domain adaptation frame-
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✩✩ The work of this paper was carried out while E. Morvant was affiliated with Institute

of Science and Technology (IST) Austria, Am Campus 1, Klosterneuburg 3400, Austria.
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1 See Refs. [4,5] for surveys on transfer learning.
2 The task with few target labels is sometimes referred to as semi-supervised domain

adaptation, and the one without target label as unsupervised domain adaptation.

work when we have no target label. This latter situation is known to

be challenging [6].

To address this kind of issues, several approaches exist in the lit-

erature.3 Among them, the instance weighting-based methods al-

low us to deal with the covariate-shift where the distributions differ

only in their marginals (e.g. [8]). Another technique is to exploit self-

labeling procedures. However, it often relies on iterative and heavy

self-labeling. For example, one of the reference methods is DASVM [9].

Concretely at each iteration, DASVM learns a SVM classifier from the

labeled source examples, then some of them are replaced by target

data auto-labeled with this SVM classifier.4 A third popular solution

is to take advantage of a distance between distributions, with the

intuition that we want to minimize this divergence while preserv-

ing good performance on the source data: If the distributions are

close under this measure, then generalization ability may be “eas-

ier” to quantify. The most popular divergences, such as the H�H-

divergence of Ben-David et al. [10,11] and the discrepancy of Mansour

et al. [12], involve the disagreement between classifiers. Although

they lead to different analyses, they enhance to the same conclusion

that is the disagreement/diversity between classifiers (from the set of

3 See Ref. [7] for a survey on domain adaptation.
4 In DASVM, the self-labeled points correspond to those with the lowest confidence,

and the deleted source points are those with the highest confidence.
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possible classifiers) must be controlled while keeping a good source

performance. However, these analysis only focus on domain adapta-

tion algorithms that return a single classifier.

In this work, we tackle the issue of learning a majority vote over

a set of classifiers or functions in a domain adaptation scenario. A

majority vote is an ensemble method5 where each function is assigned

a specific weight. From a theoretical standpoint it is well-known that

considering a set of functions with a high diversity is a desirable

property [13]. One non-domain adaptation illustration is given by

the algorithm AdaBoost of Freund and Schapire [15] that weights

weak classifiers according to different distributions of the training

data, introducing some diversity. From the theoretical side, the PAC-

Bayesian theory [16] offers a nice framework to study majority votes

and has been recently extend to domain adaptation [1], which is the

first analysis of domain adaptation done for learning target majority

votes over a set of functions (or voters).

This analysis stands in the class of approaches based on a di-

vergence between distributions. This latter, called the domain dis-

agreement, has been justified by a tight bound over the risk of the

majority vote—the C-bound [2]—and has the advantage to take into

account the expectation of the disagreement between pairs of voters.

Although their theoretical analysis is elegant and well-founded, the

algorithm derived is restricted to linear classifiers. We then intend

to design a learning framework able to deal with weighted majority

votes over real-valued voters in this PAC-Bayesian domain adaptation

scenario. With this aim in mind and knowing the C-bound has lead to

a simple and well performing algorithm for supervised classification,

called MinCq [17], we extend it to domain adaptation thanks to a non-

iterative self-labeling. Firstly, we propose a new formulation of the

C-bound suitable for every self-labeling function (which associates a

label to an example). Then, we design such a function with the help of

a divergence between the marginal distributions called the perturbed

variation (PV) [3] and based on the following principle: Two samples

are similar if each instance of one sample is close to an instance of the

other sample.

Concretely, our PV-based self-labeling focuses on the regions

where the source and target marginals are closer, then it labels

the (unlabeled) target sample only in these regions (see Fig. 1, in

Section 3.2). This self-labeled sample is then provided to MinCq.

Afterward, we highlight the influence of our self-labeling, and de-

duce an original validation procedure. Finally, our framework, named

PV-MinCq, implies good and promising results, better than a nearest

neighborhood-based self-labeling, and than other domain adaptation

methods.

The rest of the paper is organized as follows. Section 2 recalls the

PAC-Bayesian domain adaptation setting of Germain et al. [1], and

then MinCq and its theoretical basis in the supervised setting [17]. In

Section 3 we present PV-MinCq, our adaptive MinCq based on a PV-

based self-labeling procedure. Before conclude, we experiment our

framework on a synthetic problem in Section 4.

2. Notations and background

In this section, we first review the PAC-Bayesian setting in a

non-adaptive setting, and then the results of Germain et al. [1] and

Laviolette et al. [17].

2.1. PAC-Bayesian setting in supervised learning

We recall the usual setting of the PAC-Bayesian theory—

introduced by McAllester [16]—which offers generalization bounds

(and algorithms) for weighted majority votes over a set of real-valued

functions, called voters.

5 See Refs. [13,14] for survey on ensemble method in a non-domain adaptation

scenario.

Let X ⊆ R
d be the input space of dimension d and Y = {−1, +1}

be the output space, i.e. the set of possible labels. PS is an unknown

distribution over X × Y , that we called a domain. (PS)
ms = ⊗ms

s=1 PS

stands for the distribution of a ms-sample. The marginal distribu-

tion of PS over X is denoted by DS. We consider S = {(xs, ys)}ms
s=1 a

ms-sample independent and identically distributed (i.i.d.) according

to (PS)
ms , commonly called the learning sample. Let H be a set of n

(bounded) real-valued voters such that: ∀h ∈ H, h : X → R. Given H,

the ingredients of the PAC-Bayesian approaches are a prior distribu-

tion π over H, a learning sample S and a posterior distribution ρ over

H. Prior distribution π models an a priori belief on what are the best

voters from H, before observing the learning sample S. Then, given

the information provided by S, the learner aims at finding a posterior

distribution ρ leading to a ρ-weighted majority vote Bρ over H with

nice generalization guarantees. Bρ and its true and empirical risks are

defined as follows.

Definition 1. Let H be a set of real-valued voters. Let ρ be a distribu-

tion over H. The ρ-weighted majority vote Bρ (sometimes called the

Bayes classifier) is:

∀x ∈ X, Bρ(x) = sign

[
E

h∼ρ
h(x)

]
.

The true risk of Bρ on a domain PS and its empirical risk6 on a ms-

sample S are respectively:

RPS
(Bρ) = 1

2

(
1 − E

(xs,ys)∼P
ysBρ(xs)

)
,

RS(Bρ) = 1

2

(
1 − 1

ms

ms∑
s=1

ysBρ(xs)

)
.

Usual PAC-Bayesian analyses7 do not directly focus on the risk of

Bρ , but bound the risk of the closely related stochastic Gibbs classifier

Gρ . It predicts the label of an example x by first drawing a classifier

h from H according to ρ , and then it returns h(x). The risk of Gρ

corresponds thus to the expectation of the risks overH according toρ:

RP(Gρ) = E
h∼ρ

RP(h) = 1

2

(
1 − E

(xs,ys)∼P
E

h∼ρ
ysh(xs)

)
. (1)

Note that it is well-known in the PAC-Bayesian literature that the

deterministic Bρ and the stochastic Gρ are related by:

RP(Bρ) ≤ 2RP(Gρ). (2)

2.2. PAC-Bayesian domain adaptation of the Gibbs classifier

Throughout the rest of this paper, we consider the PAC-Bayesian

domain adaptation setting introduced by Germain et al. [1]. The main

difference between supervised learning and domain adaptation is

that we have two different domains over X × Y: The source domain

PS and the target domain PT (DS and DT are the respective marginals

over X). The aim is then to learn a good model on the target domain

PT knowing that we only have label information from the source

domain PS. Concretely, in the setting described in Ref. [1], we have

a labeled source ms-sample S = {(xs, ys)}ms
t=1 i.i.d. from (PS)

ms and a

target unlabeled mt-sample T = {xt}mt
t=1 i.i.d. from (DT)

mt . One thus

desires to learn from S and T a weighted majority vote with lowest

possible expected risk on the target domain RPT
(Bρ), i.e. with good

generalization guarantees on PT . Recalling that usual PAC-Bayesian

generalization bound study the risk of the Gibbs classifier, Germain

et al. [1] have done an analysis of its target risk RPT
(Gρ). Their main

result is the following theorem.

6 We express the risk with the linear loss since we deal with real-valued voters, but

in the special case of Bρ the linear loss is equivalent to the 0–1-loss.
7 Usual PAC-Bayesian analyses can be found in Refs. [18–22].
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