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a b s t r a c t

This paper proposes an effective scale invariant texture representation based on frequency decomposition

and gradient orientation. First, the image intensities are decomposed into different orientations by using

wedge filters in the frequency domain, and the N-nary coding method is adopted for the vector quantization.

Second, the scale invariant gradient orientation is generated by selecting the most stable value of the gradient

orientation with different Gaussian scales. Finally, the 2D joint distribution of the two types of local descrip-

tors is used as the representation. The performance was evaluated on texture classification using a nearest

neighbor classifier. Simple but not ordinary, our method achieves state of the art classification performance

on the KTH-TIPS dataset under the traditional experimental design. Moreover, the main experiments were

conducted on the KTH-TIPS and KTH-TIPS2-b datasets with the experimental designs of scale invariance

validation. Compared with the methods of basic image features (BIFs) and local energy pattern (LEP), the

proposed representation achieves superior performance with much lower dimension of representation.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Texture representation with scale invariance is a challenging and

long lasting problem for texture analysis. The scale invariance is an

important property for classifying the textures imaged from differ-

ent distances or with different resolutions. The approaches based on

keypoint detection have achieved a very impressive performance on

scale analysis [1–4]. In this paper, we focus on another branch of

approaches based on the statistical properties of local structure. Of

the statistical texture representations, in order to achieve the scale

invariance, the methods could be summarized into three categories.

First, the scale level of the texture is estimated and the specific

scale is selected to generate representation. For example, Li et al.

adopted the Laplacian of Gaussian filters to select an optimal scale

and construct scale invariant local binary pattern (LBP) descriptor [5].

Second, the multi-scale or multi-resolution representation is ap-

plied and the dissimilarity between the training model and testing

sample is calculated by shifting along different scales or resolutions

[6,7]. Crosier and Griffin [6] used the basic image features (BIFs) with

scale shifting and Zhang et al. [7] used local energy pattern (LEP)

with resolution shifting distance measurements to achieve the scale

invariance respectively.
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Third, the scale invariant measures are calculated to represent

the texture [8,9]. Some existing methods used the scale invariant

transforms such as the Fourier–Mellin transform, log polar Fourier

transform and wavelet transform to calculate the scale invariant

measures [10].

For the first category, the representation relies too much on the

estimation step. It might meet the situation that if the estimation is

not accurate, the representation will vary widely. For the second cat-

egory, the representation itself is still not scale invariant. Moreover,

the multi-scale or multi-resolution leads to a very high dimension

of the representation and needs more computation for the calcula-

tion of dissimilarity with the shifting method. For the third category,

the scale invariant measurements or local descriptors are specially

designed for extracting scale-independent values. The original rep-

resentation is scale invariant and it does not need any other steps

such as scale estimation or scale shifting. However, it is not easy for

a few scale invariant measurements or a pure scale invariant feature

to describe the local structure very distinctively, and it often leads to

a not very competitive classification performance compared with the

other two categories.

In this paper, we propose a simple, yet very effective scale in-

variant local descriptor for texture classification. Our method aims to

extract scale invariant measurements belonging to the third category

above. We propose to use the 2D joint distribution of two new scale

invariant descriptors to represent the texture. Specifically, the first de-

scriptor is based on the gray intensity decomposition in the frequency
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domain and the second descriptor is based on the scale invariant gra-

dient orientation. Since the two proposed descriptors achieve scale

invariance from different information, the two descriptors are very

complementary for the representation. Consequently, the proposed

method achieves state of the art classification performance on the

KTH-TIPs dataset under a traditional experimental design. Moreover,

superior classification performance is achieved in the experiments for

the validation of scale invariance compared with the two representa-

tive scale invariant approaches of BIFs [6] and LEP [7].

2. Algorithm

The proposed algorithm combines two different sorts of scale

invariant descriptors. The first local descriptor is based on the fre-

quency decomposition by using scale invariant wedge filters, and the

second one is based on the scale invariant gradient orientation. In

order to obtain the 2D joint distribution, the two types of local de-

scriptors need to be quantized respectively. The first descriptor is a

vector and we adopt the method of N-nary coding [7] for the vector

quantization. The second descriptor is a scalar and it is easy to be

quantized into different states.

2.1. Frequency decomposition

2.1.1. Generation of the local descriptor

As Varma and Zisserman pointed out, the distribution of gray

intensities cannot distinguish textures with different scales. Thus,

they thought that the distribution of derivatives or compact patches of

intensities could avoid such a drawback [11]. However, the ‘negative

property’ is positive for our method. Our objective is to find the scale

invariant descriptor. Obviously, the distribution of gray intensities is

a scale invariant representation. Unfortunately, using the distribu-

tion of intensities directly could not obtain satisfactory performance

due to the lack of a good description of the local structure and poor

distinguishing ability. Therefore, we seek a kind of orientation decom-

position which could describe the local structure. The wedge filters

are well-known scale invariant filters and have been widely used for

image processing [12,13]. The wedge filters are shown in Fig. 1.

By using the wedge filters, the image could be decomposed into

several oriented frequency subimages. Then, the oriented frequency

components are concatenated to describe the local structure. How-

ever, the local descriptor always performs badly in classification due

to the illumination affecting the representation too much. In order to

remove the effect of brightness changes and the direct current (DC)

component, a Gaussian high-pass filter is used during the frequency

filtering. Then, the contrast effect is weakened by the normalization

of Weber’s law [14]. To our knowledge, although the wedge filters

are well-known and are old scale invariant filters, no one has used

the filters to generate the local descriptor like we present here. The

specific procedure is described as follows:

• First, the Fourier transform of image I(x, y) is calculated and

denoted as F (I(x, y)).
• Second, suppose the wedge filters with different angles are

Wφj
(u, v), j ∈ {1, . . . , P}, where P is the number of filters with dif-

ferent orientations. The Gaussian high-pass filter is denoted as

Hg(u, v). Thus, the filter responses are

R(x, y, φj) = F−1(F(I(x, y)) · Hg(u, v) · Wφj
(u, v)). (1)

Fig. 1. Wedge filters for frequency decomposition.

The local descriptor at (x, y) is defined as

v(x, y) = {R(x, y, φ1), R(x, y, φ2), . . . , R(x, y, φP)}. (2)

• Finally, the local descriptor is normalized by Weber’s law as [14]:

v(x, y) ← v(x, y)[log(1 + ‖v(x, y)‖2/0.03)]/‖v(x, y)‖2. (3)

2.1.2. Vector quantization

The elements of the local descriptor are not in the range of [0, 1]

after the normalization of Weber’s law. In order to use N-nary coding

[7], the range should be transformed into [0, 1]. We use the tangent

function to transform the range [−∞,+∞] into [−π/2, π/2], then

linearly stretch the range into [0, 1].

According to [7], all of the elements from local descriptors

(regardless of category) are aggregated, and the probability distribu-

tion function (PDF) is obtained from the normalized histogram of the

elements. The N − 1 quantization thresholds are learned according to

following equation:

T =
{

f −1

(
1

N

)
, f −1

(
2

N

)
, . . . , f −1

(
N − 1

N

)}
, (4)

in which,

f (r) =
∫ r

0

p(ω)dω, (5)

where r denotes the possible value for the element of local descriptor

and p(·) is the PDF of r. The elements of each local descriptor could

be quantized to N states by T in the range of [0, 1]. Here, N states

are denoted as {0, 1, . . . , N − 1}. Thus, the quantized vector is noted

as v′(x, y) = {R′(x, y, φ1), R′(x, y, φ2), . . . , R′(x, y, φP)}. Thus, by N-nary

coding, the label of the local descriptor is defined as:

�(x, y) =
P−1∑
p=0

R′(x, y, φp)N
p. (6)

Therefore, �(x, y) ∈ {0, 1, . . . , NP − 1}.

2.2. Scale invariant gradient orientation

Only using the distribution of the local descriptor based on the

frequency decomposition is feasible, but it cannot achieve very

high classification performance. Thus, we want to find another local

descriptor with scale invariance based on different information. In

this way, the two local descriptors should be complementary.

As we know, the gradient orientation has the property of scale

invariance. For a given image I(x, y), the orientation of the gradient

is often defined as arctan(Ix/Iy), where Ix and Iy are the first order

derivatives with regards to x and y respectively. In order to preserve

the signs of the derivatives, the orientation of gradient is often devel-

oped as θ = arctan2(Ix/Iy)+ π [15], where

arctan 2

(
Ix
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)
=
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)
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arctan

(
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)
− π, Ix < 0, Iy < 0

arctan

(
Ix
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)
, Ix > 0, Iy < 0.

(7)

Consequently, 0 ≤ θ ≤ 2π . For a given scale parameter α, assume the

scaled image I1(x, y) of the original image I is I1(x, y) = I(x/α, y/α).
Moreover, assume the coordinates are continuous. Hence, the first



Download English Version:

https://daneshyari.com/en/article/534485

Download Persian Version:

https://daneshyari.com/article/534485

Daneshyari.com

https://daneshyari.com/en/article/534485
https://daneshyari.com/article/534485
https://daneshyari.com

