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a b s t r a c t 

Each typical testor-finding algorithm has a specific sensibility towards the number of rows, columns or 

typical testors within its input matrix. In this research a theoretical framework and a practical strategy 

for designing test matrices for typical testor-finding algorithms is presented. The core of the theoretical 

framework consists on a set of operators that allow the generation of basic matrices with controlled di- 

mensions and for which the total number of typical testors is known in advance. After presenting the 

required theoretical foundation, and the logic for measuring a testor-finding algorithm’s computational 

behavior, the proposed strategy is used to assess the behavior of three well-known algorithms: BT , LEX , 

and FastCTExt . Unexpected behaviors, observed during the test experiments, are analyzed and discussed, 

revealing previously unknown characterizations of the tested algorithms that neither a complexity analy- 

sis, nor a random experimentation protocol could have revealed beforehand. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

When dealing with supervised classification problems in pat- 

tern recognition, two common tasks are: (1) the determination of 

the informational relevance for each feature used to describe the 

objects under study, and (2) the selection of class representative 

objects from a supervision sample. Testor Theory [6] , provides a 

solid framework under which both tasks can be tackled, position- 

ing itself as a source of some of the most useful feature selection 

techniques. Typical testors play an important role when dealing 

with feature selection tasks [5,18] and have been used in solving 

practical problems like diagnosis of diseases [11] , text categoriza- 

tion [12] , document summarization [13] and document clustering 

[8] . 

The problem of finding the set of all typical testors in a basic 

matrix is an old problem that has had an important development 

during the last ten years. To support this statement, consider the 

number of papers presenting new algorithms related to this prob- 

lem, for example [3,4,9,10,17] . All those algorithms are generally re- 

ferred to as Typical Testor-finding Algoritms ( TTA ). 

There are two classes of TTA : deterministic and meta-heuristic. 

Deterministic algorithms guarantee that they will find all typical 
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testors in a given problem at the expense of an exponential time 

complexity. On the other hand, meta-heuristic algorithms have no 

guarantee to find all the typical testors in a given problem, but 

they are feasible to be used on extremely large search spaces 

where the time complexity of deterministic algorithms is simply 

unacceptable [16] . 

The complexity of deterministic TTA has not been sufficiently 

studied. This lack of sufficient study can be regarded as the cause 

of why most published works introducing new TTA fail, in the 

opinion of the authors of this paper, to properly justify their selec- 

tion of basic matrices for comparative performance experimenta- 

tion between different algorithms. On one hand, since the number 

of matrices selected for experimentation is considerably low, the 

obtained results lack statistical significance. On the other hand, by 

not using a specific strategy for comparatively testing algorithms, 

the characteristic behavior of each algorithm in the presence of 

certain stereotypical phenomena is not captured. 

Fortunately a convenient strategy for selecting matrices for al- 

gorithm testing is certainly viable. In [1] , a feasible strategy for 

generating test matrices was sketched for the first time, and in 

[2] it was used to benchmark some TTA . In the generated test 

matrices the set of typical testors can be determined in advance. 

This property allows the assessment of the computational behav- 

ior for the implementation of any deterministic TTA , as well as the 

validation of the answer completeness of any meta-heuristic TTA . 

Since both, the amount of typical testors and their length can be 
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preset, generated test matrices can be targeted for studying some 

specific computational behavior by varying only one parameter at 

a time. For example, we can consider the exponential increase in 

the number of matrix rows with only a linear increase in the num- 

ber of typical testors, or a linear increase in the number of matrix 

columns, resulting in a polynomial growth of the number of typical 

testors. 

In this paper, we worked along two main directions. First, we 

significantly extended the previously presented theoretical frame- 

work to allow for the generation of a whole new set of test ma- 

trices that is more flexible and versatile. Second, we show how 

those matrices can be used to study the behavior of a TTA in the 

presence of specific phenomena. We also selected three previously 

published TTA , tested them against carefully selected test matrices, 

and discussed the obtained results. 

The rest of this paper is structured as follows. In Section 2 , the 

theoretical background for the generation of test matrices is set. 

Section 3 , presents the TTA selected for experimentation, as well as 

some of their known properties. The complete set of experiments 

with all three TTA is presented in Section 4 . Finally, we draw some 

important conclusions for new algorithm developers. 

2. Theoretical background 

Several, if not all of the research works in Testor Theory, han- 

dle a matrix that holds the information about the comparison 

of objects belonging to different classes within a certain supervi- 

sion sample. That matrix is called a comparison matrix. Since us- 

ing boolean comparison functions for constructing this matrix is a 

common practice, the result is a Boolean matrix. The comparison 

matrix is known as a difference matrix ( DM ) when each entry 0 

means that there is a pair of objects, within the supervision sam- 

ple, with the exact same value in the feature corresponding to the 

column of that entry, and each entry 1 means that the value, for 

the corresponding feature, is dissimilar in those objects. 

Let R DM 

= { a 1 , . . . , a m 

} and C DM 

= { x 1 , . . . , x n } be the set of rows 

and the set of columns of a DM , respectively. T ⊆ C DM 

is called a 

testor in DM if the submatrix DM | T , obtained by eliminating from 

DM all columns not in the subset T , does not have any row com- 

posed exclusively by entries 0. Also, T is called a typical testor (ir- 

reducible testor) if no subset of T can be found to be also a testor 

in DM . According to the previous definition, a typical testor is a 

minimal set of features capable of describing all objects in the su- 

pervision sample, without causing confusion among those belong- 

ing to different classes. 

A row r p within a difference matrix is considered as sub-row of 

another row r q if the following two conditions hold: each position 

of r p holds a value less than or equal to the value in r q at the 

same position, and there is at least one position where r p has a 

value strictly less than the corresponding one in r q . A row r p in 

a difference matrix A , is called a basic row if it has no sub-rows 

within the same matrix. 

To reduce a difference matrix, and take advantage of the last 

definition, for each DM , a basic matrix ( BM ) can be constructed 

which contains all and exclusively the basic rows from that DM . 

Moreover, since a BM has equal or less rows than its original DM , 

and it has been demonstrated that the set of all typical testors 

is exactly the same in both matrices, a great majority of testor- 

finding algorithms work on the BM instead of the DM [7,14] . 

Let A = [ a i j ] m ×n and B = [ b i j ] m 

′ ×n ′ be two basic matrices. Then 

three crucial operators on pairs of matrices A and B ( θ ( A , B ), γ ( A , 

B ), and ϕ( A , B )) can be defined as follows: 

1. The θ ( A , B ) operation produces a new matrix where each row in 

A is left-concatenated with each row in B , consequently having 

m × m 

′ rows (the product of the number of rows in A and B ), 

and also having n + n ′ columns. 

2. The γ ( A , B ) operation creates a new matrix which has matrix 

A on its upper-left corner, followed by zeroes on all columns of 

B , and also has the B matrix on its lower-right corner, preceded 

by zeroes on all columns of A . 

3. Finally, the result of a ϕ( A , B ) operation is a new Boolean matrix 

obtained by concatenating A and B if they have the same num- 

ber of rows. The resulting matrix has exactly the same number 

of rows of A and B , but it has n + n ′ columns (the sum of the 

number of columns from A and B ). 

Here are the formal specifications for all the above operations: 

θ (A, B ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

a 11 ···a 1 n b 11 ···b 1 n ′ 
. . . 

. . . 
a 11 ... a 1 n b m 

′ 1 ... b m 

′ n ′ 
. . . 

. . . 
a m 1 ... a mn b 11 ... b 1 n ′ 

. . . 
. . . 

a m 1 ... a mn b m 

′ 1 ... b m 

′ n ′ 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(1) 

γ ( A, B ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

a 11 ... a 1 n 0 

. . . 
. . . 

a m 1 ... a mn 0 

. . . 
. . . 

0 b 11 ... b 1 n ′ 
. . . 

. . . 
0 b m 

′ 1 ... b m 

′ n ′ 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(2) 

and if m = m 

′ then 

ϕ ( A, B ) = 

⎡ 

⎣ 

a 11 ... a 1 n b 11 ... b 1 n ′ 
. . . 

a m 1 ... a mn b m 1 ... b mn ′ 

⎤ 

⎦ (3) 

The most important property of the ϕ, θ and γ operators is 

that, when applied to basic matrices, the resulting matrix is also 

basic, since they preserve the portion of the matrix that guaran- 

tees that rows are incomparable. Also, if their arguments are all 

basic matrices, then all three operators are associative. As a con- 

sequence, we will write ϕ 

N ( A ) to represent the resulting matrix of 

applying the ϕ operator over N matrices A (with ϕ 

1 (A ) = A ); we 

write θN ( A ) to represent the result of applying the θ operator N 

times consecutively (with θ1 (A ) = A ); and we write γ N ( A ) when 

applying γ N times over matrix A (with γ 1 (A ) = A ). 

Now, let C A = { x 1 , . . . , x n } be the set of columns in basic ma- 

trix A , and let x j ∈ C A . We will write [ x j ] N to denote the class of 

all columns in ϕ 

N ( A ) exactly equal to x j . In other words, [ x j ] N = 

{ x j, x j+ n , . . . , x j+(N−1) n } . Given S ⊆ C A and S = { x j 1 , . . . , x j s } , [ S ] N will 

denote the family of all subsets of columns from ϕ 

N ( A ) that can 

be obtained by replacing one or more columns in S with any other 

column in the same class, that is, [ S] N = [ x j 1 ] N × · · · × [ x j s ] N . Then 

it is easy to verify that | [ S] N | = N 

| S| . 
Therefore, if A and B are basic matrices such that the sets �∗( A ) 

and �∗( B ) of all typical testors in matrices A , and B are known, 

then the next three propositions establish how the sets �∗( ϕ 

N ( A )), 

�∗( θ ( A , B )), and �∗( γ ( A , B )) can be analytically obtained: 

Proposition 1. �∗(ϕ 

N (A )) = { [ T ] N | T ∈ �∗(A ) } . 
Proposition 1 states that the set of typical testors in a matrix 

A , concatenated N times with itself, is exactly the set of all classes 

of typical testors in A . This proposition can be proved by observing 
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