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a b s t r a c t 

Multilabel learning is an important research problem arising in a number of practical applications from 

diverse fields. Recent studies on multilabel learning have suggested the approach of matrix completion as 

a novel and promising approach to transductive multilabel learning. Here the missing labels of test data 

are regarded as missing values from the construction matrix composed of feature-by-item and label-by- 

item matrices. With the assumption of the low rank of the construction matrix, by minimizing its rank 

under the constraints of observed data and labels, we can recover all the missing labels. Despite its suc- 

cess, however, naive matrix completion methods ignore the smoothness assumption of the large amount 

of unlabel data, i.e., similar data should share similar labels, which may under exploit the intrinsic struc- 

ture of data. To this end, we propose to solve the multi-label learning problem as an enhanced matrix 

completion problem with manifold regularization, where the graph Laplacian is used to ensuring the la- 

bel smoothness over the label space. The resulting nuclear norm minimization problem is solved with a 

modified fixed-point continuation method that is guaranteed to find the global optimum. Experiments on 

both synthetic and real-world data have shown the promising results of the proposed approach. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Multilabel learning is an important research problem in a num- 

ber of real world applications, such as automatic image annota- 

tion and text categorization, where each example of data can be 

assigned to a set of labels, simultaneously. For example, in natural 

language processing, a wikipedia term “Albert Einstein” covers 54 

categories (such as “Nobel laureates in Physics”, “Jewish physicists”, 

“American physicists” and so on); in bioinformatics, most genes are 

associated with more than one functional classes (e.g., metabolism, 

transcription and protein synthesis); in automatic image annota- 

tion, each image can also be assigned with a number of tags (e.g., 

sunset, sea, water, and hill). 

During the past decades, many methods have been proposed 

to learn from multi-label data. According to a recent survey by 

Zhang and Zhou [21] , most of existing methods fall into two cat- 

egories – problem transformation methods and algorithm adaptation 
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methods . Problem transformation methods try to transform multi- 

label learning into an existing and well-established learning ar- 

chitecture, such as binary classification or label ranking problems. 

Typical examples of this kind of methods include the works of 

Boutell et al. [2] , Read et al. [18] and Fürnkranz et al. [11] . How- 

ever, this kind of approaches usually ignores the underlying cor- 

relations among the multiple different labels, which could be an 

important hint for deciding the class memberships. While algo- 

rithm adaptation methods try to adapt popular learning tech- 

niques to deal with multi-label data, such as ML- k NN [20] and 

Rank-SVM [10] , which may be reliable when the amount of train- 

ing instances is sufficient and the number of classes is relatively 

small. 

In contrast, real-world applications of multi-label learning usu- 

ally contain a large number of classes and a relatively small size 

of training data. As a result, the amount of training data related to 

each class is usually small and insufficient for learning a reliable 

classifier. In addition, part of the labels associated with some ex- 

amples may be unobserved and some instances may even be com- 

pletely unlabeled. Take automatic image annotation as an example, 

digital images uploaded by users to the Internet usually have mul- 

tiple semantic meanings, however most of them are only labeled 

with part of semantic meaning or unlabeled. 
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To address this problem, we present a novel framework for 

multi-label learning based on regularized low rank minimization 

of the joint matrix of the feature-by-item matrix and label-by-item 

matrix. It can: (1) explicitly explore the correlation among differ- 

ent labels via low rank minimization, (2) leverage the requirement 

of large amount of training data via manifold regularization, and 

(3) automatically complete the missing labels via matrix comple- 

tion. Different from traditional approaches for multi-label learn- 

ing that also explore the class correlation, the proposed framework 

provides a natural way for exploring the intrinsic structure of un- 

labeled data, the label correlation, and the missing of labels, si- 

multaneously, thus effective for the learning scenarios with a large 

number of missing labels and a small size of training data. 

Our paper extends traditional multilabel learning approaches 

based on matrix completion, proposed by Goldberg et al. [12] , 

Cabral et al. [4] and Liu et al. [14] , with a more reasonable mod- 

eling of the intrinsic structures of data. In more detail, in order 

to leverage the scarcity of labeled examples, we adopt the man- 

ifold assumption, i.e., instances lie in a small local neighborhood 

region should also share similar set of labels. To this end, the graph 

Laplacian is calculated to constrain the process of matrix comple- 

tion, where we call the proposed model Matrix Completion with 

Graph Laplacian (MCLA). The resulted nuclear norm minimization 

problem can be solved with a modified fixed-point continuation 

method which is guaranteed to converge to the global optimum. 

Experiments on both synthetic and real-world data have shown 

that our proposed method can achieve promising results. 

2. Related work 

2.1. Semi-supervised learning 

Traditional supervised learning methods use only labeled data 

to train classifiers. However, labeled data are often expensive and 

difficult to obtain. Meanwhile plenty of unlabeled data may be 

relatively easy to collect. Semi-supervised learning addresses this 

problem by using both of labeled data and the large amount of un- 

labeled data to make better classification. Semi-supervised learning 

usually requires less human effort and gives higher accuracy [23] . 

However, there are basic assumptions behind the above conclu- 

sion, which states that classification performance can be improved 

when we utilizing unlabeled data in training. In other words, 

one could say that the knowledge on p ( x ) that one gains through 

the unlabeled data has to carry information that is useful in the 

inference of p ( y | x ) [8] . One condition that unlabeled data could 

help semi-supervised learning is that it complies with the cluster- 

ing assumption. The clustering assumption considers that if two 

instances lie on a same cluster, they share same labels with a very 

high probability. Another basic assumption is manifold assumption 

[17] or smoothness assumption, which refers to instances lie 

in a small local neighborhood region should also share similar 

set of labels. Semi-supervised learning has also been studied to 

address the problem of the small number of labeled examples in 

multi-label classification [9,15,19] under various assumptions of 

semi-supervised learning. However, most of them are with less 

consideration on the large number of (probably partially observed) 

classes in real world multilabel learning applications. 

2.2. Multi-label learning with matrix completion 

Considering an m × n low rank or approximately low-rank ma- 

trix A with only partially observed entries A ij , we use � to denote 

the set of indices of observed entries. The goal of matrix com- 

pletion is to recover the rest of matrix A by a same-size substi- 

tute matrix X with X i j = A ij ∀ ( i , j ) ∈ �. Actually, in very general 

settings, the work of [5] shows that the goal of perfectly recover- 

ing all of the unobserved entries from a sufficiently large random 

subset can be achieved by using a minimizer obtained with the 

Nuclear Norm. And many works have been done to perform this 

optimization efficiently [13,16] . For semi-supervised multi-label 

learning, Goldberg et al. in [12] assumed that the feature-by-item 

and label-by-item matrices are jointly low rank, then abstracted 

this task as a matrix completion problem. In [4] , matrix comple- 

tion was applied in multilabel image classification and achieved a 

remarkable performance. Alternatively, Liu et al. [14] have modeled 

the multilabel classification problem as a non-negative matrix fac- 

torization problem. Despite the successes of these works, they may 

under exploit the intrinsic structure conveyed in the large amount 

of unlabeled data, and thus suboptimal for classification. In con- 

trast, the proposed algorithm in our paper can take the advan- 

tages of the data geometry conveyed in data to improve multilabel 

classification. 

3. Matrix completion with manifold regularization 

We consider the settings of transductive multilabel learning, 

where only a limited number of (partially) labeled examples are 

given and most of examples are not labeled. We denote the num- 

ber of labels by t . Let X L = { x i , y i } l i=1 
be the labeled set where l 

denotes the number of labeled examples, and X U = { x i } n i=l+1 
be the 

unlabeled set, where n denotes the whole amount of observed ex- 

amples and each example x i ∈ R 

d . We denote the label vector by 

y i ∈ {−1 , +1 } t . Such that y i (k ) = +1 if y i belongs to the k -th class 

(1 ≤ k ≤ t ), and −1 otherwise. We further denote the observed 

label set as Y L , and the partially observed and unobserved label 

set as Y U . Given the whole set of examples and partial label infor- 

mation, we hope to complete the label set Y U . 

In the following, we will first model the multilabel learn- 

ing problem as a matrix completion problem, then enhance it 

with manifold regularization for better modeling intrinsic mani- 

fold structure of data, followed by the details of the optimization 

method. 

3.1. Matrix completion for multilabel learning 

We first introduce an intermediate instance matrix ( X 

0 
L 
, X 

0 
U 
) , 

such that the observed instance matrix ( X L , X U ) is sampled from 

( X 

0 
L 
, X 

0 
U 
) with i.i.d Gaussian noises: ( X L , X U ) = ( X 

0 
L 

+ ε, X 

0 
U 

+ ε) , 
where ε ij ∼ N (0, σ 2 ). Then the intermediate label matrix ( Y 

0 
L 
, Y 

0 
U 
) 

can be represented as a linear combination of instance matrix un- 

der a weight matrix W ∈ R 

t × R 

d : ( Y 

0 
L 
, Y 

0 
U 
) = W( X 

0 
L 
, X 

0 
U 
) . Given the 

linear projection W, the ranks of these two matrices ( X 

0 
L 
, X 

0 
U 
) and 

( Y 

0 
L 
, Y 

0 
U 
; X 

0 
L 
, X 

0 
U 
) satisfies: 

rank 

((
Y 

0 
L Y 

0 
U 

X 

0 
L X 

0 
U 

))
≤ rank ((X 

0 
L , X 

0 
U )) + 1 . 

We further constructed the augmented matrix Z as follows: 

Z = 

⎛ 

⎝ 

Y 

0 
L Y 

0 
U 

X 

0 
L X 

0 
U 

1 

� 1 

� 

⎞ 

⎠ . 

Due to the correlation among the label set [Y 

0 
L 
Y 

0 
U 

] and the con- 

nection between data and labels, the rank of Z should be small. 

However, it is very hard to directly solve a rank minimization prob- 

lem. Fortunately, rank minimization can be relaxed as minimiza- 

tion of the nuclear norm of Z, that is ‖ Z ‖ ∗ = 

∑ 

k σk (Z) where σ k (Z) 

is the k -th singular value of Z [6,7] . Now with the consideration of 

the noises on (X 

0 
L 
, X 

0 
U 
) and (Y 

0 
L 
) , the optimization problem can be 
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