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a b s t r a c t 

In the past decade, there has been a great interest in the sparse synthesis model for signal. The re- 

searchers have obtained a series of achievements about the sparse representation. The cosparse analysis 

model as the corresponding version of the sparse synthesis model has drawn much attention in recent 

years. Many approaches have been proposed to solve this model. In some conventional general, these 

methods usually relaxed l 0 -norm to l 1 -norm or l 2 -norm to represent the cospasity of signal, from which 

some reasonable algorithms have been developed. Furthermore, this work will present a new alterna- 

tive way to replace the l 0 -norm based on the cosparsity inducing function, which is closer to l 0 -norm 

than l 1 -norm and l 2 -norm. Based on this function, we firstly construct the objective function and give a 

constrained optimal model of the cosparse recovery problem. Then we propose a subgradient algorithm –

cosparsity inducing function (CIF) algorithm, which belongs to a two-layer optimization algorithm. Specif- 

ically, through converting the constrained optimal problem into the unconstrained case, we firstly obtain 

a temporary optimal variable, in which the cosparsity inducing function is approximated using its lo- 

cal linear approximation in order to avoid its nonconvex property. Secondly, a new cosupport is given 

by projecting the temporary optimal variable into the cosparse subspace and then keeping the l small- 

est elements. Besides, the desired signal is estimated using a conjugate gradient algorithm on the new 

cosupport. Moreover, we study the relative theoretical analysis about CIF algorithm. Simulations on the 

recovering of the unknown signal in the cosparse analysis model indicate its better performance at last. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In recent years, signal models have drawn much attention and 

been successfully used for a variety of signal processing tasks such 

as denoising, deblurring and compressing sensing. To obtain the 

sparse representation for signals, the researchers are interested in 

the following problem: the signal of interest x ∈ R 

d is observable 

only through a set of linear measurements y ∈ R 

m and the obser- 

vation matrix M ∈ R 

m ×d (m < d) 

y = Mx + e , (1) 

where e is the additive noise that satisfies ‖ e ‖ 2 ≤ ε. When e = 0 , 

Eq. (1) becomes y = Mx , it is the noiseless case. The aim of solv- 

ing the problem (1) is to recover or approximate x from y . Since 

this problem is a linear equation system with more unknowns than 
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equations, i.e., under complete, generally, it is impossible. If x is 

known to be sparse in prior, the problem has been shown solvable. 

So far, there are two important signal models to solve the problem 

(1) : the sparse synthesis model and the cosparse analysis model. 

In the sparse synthesis model, the main optimization problem 

about the sparse representation is 

ˆ x = D ̂  α and ˆ α = argmin 

α∈ R n 
‖ α‖ 0 , subject to ‖ y − Mx ‖ 2 � ε, (2) 

where the signal x ∈ R 

d is assumed to be composed as linear com- 

binations of a few atoms from a given dictionary D ∈ R 

d×n , which 

is overcomplete, i.e., n > d , such as x = D α. The vector α ∈ R 

n 

is the sparse representation of x , that is to say, α contains few 

nonzeros elements, and the sparsity k is the number of nonzero 

elements in α, i.e. ‖ α‖ 0 = k � d [1–3] . 

In the cosparse analysis model, the researchers often consider 

the following optimization problem to recover x from y 

ˆ x = argmin 

x ∈ R d 
‖ �x ‖ 0 , subject to ‖ y − Mx ‖ 2 � ε, (3) 

where � ∈ R 

p×d (p > d) is a fixed analysis operator. We can 

find that the goal of the problem (3) is to make the cosparse 
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representation vector �x sparse. In other words, �x contains many 

zeros. The cosparsity l is the number of zeros in �x , i.e. l = p −
‖ �x ‖ 0 (0 � l � d) , where ‖ �x ‖ 0 � p − d [4] . 

Certainly, there are some connections and differences between 

the sparse synthesis model and the cosparse analysis model that 

has proved in some literatures [2,5,6] . Specially, these two models 

may become equivalent in the general case, when D is a square 

and invertible matrix, i.e. D = �−1 , and D ∈ R 

m ×n is a full-rank 

matrix with n < m for D = �+ = (�T �) −1 �T . While this seems 

like a perfect transfer from the analysis model to the synthesis 

model, it is in fact missing a key element. It simply states that 

x must reside in the range of �, i.e. ��+ x = �(�T �) −1 �T x = x . 

Adding this as a constraint to the synthesis model, we get an ex- 

act equivalence, and otherwise, the synthesis model gets a larger 

number of degrees of freedom, and thus its minimum is deeper. In 

this work, we will concentrate on the cosparse analysis model. 

As we all know, l 0 -norm problem is generally NP-hard. From the 

previous works, we can find that there are some alternative ways 

to replace the l 0 -norm. For example, the l 1 -norm or l 2 -norm due 

to their convexity [2,6,7] 

ˆ x = argmin 

x ∈ R d 
‖ �x ‖ 1 , subject to ‖ y − Mx ‖ 2 � ε (4) 

ˆ x = argmin 

x ∈ R d 
‖ �x ‖ 2 , subject to ‖ y − Mx ‖ 2 � ε (5) 

At present, for these problems in the cosparse analysis model, the 

main works are not only the related algorithms to estimate or ap- 

proximate the sparse representation of the possibly observed sig- 

nal, but also the theoretical success guarantees for such algorithms 

[4,6,8] . 

Specifically, for the optimal model (4) , Cai et al. introduce a 

split Bregman method which solves this model prevailingly using 

the Bregman iteration and provide the detailed convergence analy- 

sis [6] . The Bregman iteration converges very quickly when applied 

to certain types of objective functions, especially for problems in- 

volving an l 1 regularization term. So the Split Bregman method 

takes only a few steps of iterations to give good results for the 

cosparse analysis model. 

In order to solve the optimal model (5) , literature [4] gives a 

greedy algorithm termed “Greedy Analysis Pursuit” (GAP), which is 

an effective pursuit methods and similar to the Orthogonal Match- 

ing Pursuit (OMP) [2] . This approach updates the cosupports of the 

cosparse signals in a greedy fashion to find approximate solution 

under the noiseless condition. GAP recovers the signal perfectly in 

the relevant experiments. Besides, another kind of the greedy al- 

gorithm is also used to solve this model. The work presented in 

[8] describes a new family of greedy-like methods for the cosparse 

analysis model, including Analysis IHT (AIHT), Analysis HTP (AHTP), 

Analysis CoSaMP (ACoSaMP) and Analysis SP (ASP). These algo- 

rithms are the analysis versions of the synthesis counterpart ap- 

proaches, i.e. Iterative Hard Thresholding (IHT), Hard Thresholding 

Pursuit (HTP), Compressive Sampling Matching Pursuit (CoSaMP), 

Subspace Pursuit (SP) [9–12] . When x is a low dimensional sig- 

nal, the methods of AHTP, ACoSaMP, ASP need to solve the trans- 

formation of the problem (5) , i.e. min 

x 
‖ y − Mx ‖ 2 

2 
s.t. ‖ �∧ x ‖ 2 2 

= 0 , 

where ∧ is the cosupport. And for high dimensional signals, the 

model (5) is replaced by the following unconstrained minimization 

problem min 

x 
‖ y − Mx ‖ 2 

2 
+ λ‖ �∧ x ‖ 2 2 

( λ is a relaxation constant). 

Meanwhile, literature [8] also provides performance grantees for 

these methods, which relied on a restricted isometry property 

(RIP) adapted to the context of the cosparse analysis model. 

Although the l 1 -norm and l 2 -norm overcome the computational 

difficulty, the researchers still prefer to find the better substitutions 

than the popular l 1 -norm and l 2 -norm. For the problem (2) , many 

of works related sparse recovery replaced the l 0 -norm using l q - 

norm (0 < q < 1) and have proved that l q (0 < q < 1) minimization 

has better sparse recovery ability than l 1 minimization [13–21] . Be- 

sides, another novel idea of the sparsity inducing functions which 

used in the synthesis model (2) has proposed by Montefusco et al. 

[22] , in which the sparse representation of recovering x from y un- 

der the noiseless situation be cast as 

min 

x ∈ R d 
�(x ) , subject to y = Mx , (6) 

where �(x) is called the sparsity inducing function, which can be 

chosen l q -norm(0 < q < 1), atan function, log-sum function and so 

on. These sparsity inducing functions are more or less closely re- 

sembling the l 0 -norm, which have been proved that the recovery 

effect is better by the related experiments in some other litera- 

tures [23–25] . Although these above functions are nonsmooth and 

nonconvex (concave), they also maintain some good properties of 

the l 1 -norm, such as continuity and differentiability (for x � = 0 ). 

In fact, there are some methods to resolve this nonsmooth and 

nonconvex optimization problem [22,26–30] , which includes a first 

order approximation method, a neural network approach based on 

smoothing approximation and so on. Here, we mainly focus on the 

first order approximation method. As we all know, the good prop- 

erties of the first order approximation method are easy to imple- 

ment, and are easily obtained by exploiting the concavity of the 

function, which always lies below its tangent. And it is also shown 

that this method has ability to yield the best convex majoriza- 

tion of a concave objective function. At present, there are some 

representative works about the first order approximation method 

[22,26,27] . One of them is the local linear approximation (LLA) 

method proposed in [22,26] , which is possible to transform the 

nonconvex constrained minimization problem into a convex un- 

constrained problem by inserting the local linear approximation 

in the context of a Lagrangian approach. In literature [27] , there 

is another first order method named smoothing quadratic regular- 

ization (SQR) algorithm, which solves a strongly convex quadratic 

minimization problem with a diagonal Hessian matrix at each 

iteration. 

Inspired by the literature [22,26,27] , this work will concentrate 

on a more suitable relaxation of l 0 -norm in the analysis model 

which may be differ from the l 1 -norm and l 2 -norm. One new 

substitution, named cosparsity inducing function, will be given 

to replace the l 0 -norm, which is closer to it than l 1 -norm and 

l 2 -norm. The cosparsity inducing function includes the following 

forms, such as A- l q , A-atan and A-log-sum function, whose details 

will be given in Section 2 . Based on these functions, we firstly con- 

struct the objective function and give a constrained optimal model 

of the cosparse recovery problem. Then we propose a subgradient 

algorithm – cosparsity inducing function (CIF) algorithm, which be- 

longs to a two-layer optimization algorithm. Specifically, through 

converting the constrained optimal problem into the unconstrained 

case, we firstly obtain a temporary optimal variable based on the 

gradient learning step, in which the cosparsity inducing function is 

approximated using its local linear approximation in order to avoid 

its nonconvex property. Secondly, a new cosupport is given by pro- 

jecting the temporary optimal variable into the cosparse subspace 

and then keeping the l smallest elements. Finally, the desired sig- 

nal is estimated using a conjugate gradient algorithm on the new 

cosupport. The CIF algorithm has a better recovery ability than 

some existing methods for solving the cosparse analysis problem, 

which will be indicated by the numerical experiments. 

The manuscript is organized as follows. Section 2 will intro- 

duce the optimal model firstly, and give the cosparsity induc- 

ing functions including their expression, and their subgradients. 

Meanwhile, we will propose CIF algorithm and provide its main 

procedure. In Section 3 , we will provide theoretical guarantees 

for the recovering performance of CIF algorithm. The numerical 
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