Pattern Recognition Letters 80 (2016) 150-156

Contents lists available at ScienceDirect i;%ittern Recognition

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Representation learning for very short texts using weighted word
embedding aggregation™

@ CrossMark

Cedric De Boom*, Steven Van Canneyt, Thomas Demeester, Bart Dhoedt

Department of Information Technology, Ghent University - iMinds, Technologiepark 15, 9052 Zwijnaarde, Belgium

ARTICLE INFO ABSTRACT

Article history:
Received 10 February 2016
Available online 28 June 2016

Short text messages such as tweets are very noisy and sparse in their use of vocabulary. Traditional tex-
tual representations, such as tf-idf, have difficulty grasping the semantic meaning of such texts, which
is important in applications such as event detection, opinion mining, news recommendation, etc. We
constructed a method based on semantic word embeddings and frequency information to arrive at low-
dimensional representations for short texts designed to capture semantic similarity. For this purpose we
designed a weight-based model and a learning procedure based on a novel median-based loss function.
This paper discusses the details of our model and the optimization methods, together with the experi-
mental results on both Wikipedia and Twitter data. We find that our method outperforms the baseline
approaches in the experiments, and that it generalizes well on different word embeddings without re-
training. Our method is therefore capable of retaining most of the semantic information in the text, and
is applicable out-of-the-box.

Keywords:

Information storage and retrieval
Natural language processing
Artificial intelligence

Word embeddings
Representation learning

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Short pieces of texts reach us every day through the use of so-
cial media such as Twitter, newspaper headlines, and texting. Espe-
cially on social media, millions of such short texts are sent every
day, and it quickly becomes a daunting task to find similar mes-
sages among them, which is at the core of applications such as
event detection [6], news recommendation [11], etc.

In this paper we address the issue of finding an effective vector
representation for a very short text fragment. By effective we mean
that the representation should grasp most of the semantic infor-
mation in that fragment. For this we use semantic word embed-
dings to represent individual words, and we learn how to weigh
every word in the text through the use of tf-idf (term frequency
- inverse document frequency) information to arrive at an overall
representation of the fragment.

These representations will be evaluated through a semantic
similarity task. It is therefore important to point out that textual
similarity can be achieved on different levels. At the most strict
level, the similarity measure between two texts is often defined
as being (near) paraphrases. In a more relaxed setting one is

* This paper has been recommended for acceptance by Jie Zou.
* Corresponding author. Tel.: +32 9 331 49 42.
E-mail address: cedric.deboom@ugent.be (C. De Boom).

http://dx.doi.org/10.1016/j.patrec.2016.06.012
0167-8655/© 2016 Elsevier B.V. All rights reserved.

interested in topic- and subject-related texts. For example, if a
sentence is about the release of a new Star Wars episode and an-
other about Darth Vader, they will be dissimilar in the most strict
sense, although they share the same underlying subject. In this
paper we focus on the broader concept of topic-based semantic
similarity, as this is often applicable in the already mentioned use
cases of event detection and recommendation.

Our main contributions are threefold. First, we construct a tech-
nique to calculate effective text representations by weighing word
embeddings, for both fixed- and variable-length texts. Second, we
devise a novel median-based loss function to be used in the con-
text of minibatch learning to mitigate the negative effect of out-
liers. Finally we create a dataset of semantically related and non-
related pairs of text from both Wikipedia and Twitter, on which
the proposed techniques are evaluated.

We will show that our technique outperforms most of the base-
lines in a semantic similarity task. We will also demonstrate that
our technique is independent of the word embeddings being used,
so that the technique is directly applicable and thus does not re-
quire additional model training when used in different contexts, in
contrast to most state-of-the art techniques.

In the next section, we start with a summary of the related
work, and our own methodology will be devised in Section 3. Next
we explain how data is collected in Section 4, after which we dis-
cuss our experimental results in Section 5.


http://dx.doi.org/10.1016/j.patrec.2016.06.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2016.06.012&domain=pdf
mailto:cedric.deboom@ugent.be
http://dx.doi.org/10.1016/j.patrec.2016.06.012

C. De Boom et al./Pattern Recognition Letters 80 (2016) 150-156 151

2. Related work

In this work we use so-called word embeddings as a basic
building block to construct text representations. Such an embed-
ding is a distributed vector representation of a single word in a
fixed-dimensional semantic space, as opposed to term tf-idf vec-
tors, in which a word is represented by a one-hot vector [1,19]. A
word’s term frequency (tf) is the number of times the word occurs
in the considered document, and a word’s document frequency (df)
is the number of documents in the considered corpus that contain
that word. Its (smoothed) inverse document frequency (idf) is de-
fined as:

N N

idf = log T dr (1)
in which N is the number of documents in the corpus [19]. A tf-
idf-based similarity measure is based on exact word overlap. As
texts become smaller in length, however, the probability of having
words in common decreases. Furthermore, these measures ignore
synonyms and any semantic relatedness between different words,
and are prone to negative effects of homonyms.

Instead of relying on exact word overlap, one can incorporate
semantic information into the similarity process. Latent Semantic
Indexing (LSI) and Latent Dirichlet Allocation (LDA) are two exam-
ples, in which every word is projected into a semantic (topic) space
[2,7]. At test time, inference is performed to obtain a semantic vec-
tor for a particular sentence. Both training and inference of stan-
dard LSI and LDA, however, are computationally expensive on large
vocabularies.

Although LSI and LDA have been used with success in the past,
Skip-gram models have been shown to outperform them in various
tasks [18,20]. In Skip-gram, part of Google’s word2vec toolkit!, dis-
tributed word embeddings are learned through a neural network
architecture to predict its surrounding words in a fixed window.

Once the word embeddings are obtained, we have to combine
them into a useful sentence representation. One possibility is to
use a multilayer perceptron (MLP) with the whole sentence as an
input, or a 1D convolutional neural network [4,9,10,26]. Such an
approach, however, requires either an input of fixed length or ag-
gregation operations - such as dynamic k-max pooling [12] - to
arrive at a sentence representation that has the same dimension-
ality for every input. Recurrent neural networks (RNNs) and vari-
ants can overcome the problem of fixed dimensionality or aggre-
gation, since one can feed word after word in the system and in
the end arrive at a text representation [22-24]. The recently intro-
duced Skip-thought vectors, heavily inspired on Skip-gram, com-
bine the learning of word embeddings with the learning of a useful
sentence representation using an RNN encoder and decoder [15].
RNN-based methods present a lot of advantages over MLPs and
convolutional networks, but still retraining is required when using
different types of embeddings.

Paragraph2vec is another method, inspired by the Skip-gram al-
gorithm, to derive sentence vectors [17]. The technique requires
the user to train vectors for frequently occurring word groups. The
method, however, is not usable in a streaming or on-the-fly fash-
ion, since it requires retraining for unseen word groups at test
time.

Aggregating word embeddings through a mean, max,
min... function is still one of the most easy and widely used
techniques to derive sentence embeddings, often in combination
with an MLP or convolutional network [4,21,25,27]. On one hand,
the word order is lost, which can be important in e.g. para-
phrase identification. On the other hand, the methods are simple,
out-of-the-box and do not require a fixed length input.

1 Available at code.google.com/archive/p/word2vec.

Related to the concepts of semantic similarity and weighted
embedding aggregation, there is extensive literature. Kusner et al.
[16] calculate a similarity metric between documents based on the
travel distance of word embeddings from one document to another
one. We on the other hand will derive vectors for the documents
themselves. Kenter and de Rijke [14] learn semantic features for
every sentence in the dataset based on a saliency weighted net-
work for which the BM25 algorithm is used. However, the features
are being learned for every sentence prior to test time, and there-
fore not applicable in a real-time streaming context. Finally, Kang
et al. [13] calculate a cosine similarity matrix between the words of
two sentences that are sorted based on their idf value, which they
use as a feature vector for an MLP. Their approach is similar to our
work in the sense that the authors use idf information to rescale
term contribution. Their primary goal, however, is calculating se-
mantic similarity instead of learning a sentence representation. In
fact, the authors totally discard the original word embeddings and
only use the calculated cosine similarity features.

3. Methodology

The core principle of our methodology is to assign a weight to
each word in a short text. These weights are determined based on
the idf value of the individual words in that text. The idea is that
important words - i.e. words that are needed to determine most
of the text’'s semantics — usually have higher idf values than less
important words, such as articles and auxiliaries... Indeed, the lat-
ter appear more frequently in various different texts, while words
with a high idf value mostly occur in similar contexts. The final
goal is to combine the weighted words into a semantically effec-
tive, single text representation.

To achieve this goal, we will model the problem of finding a
suitable text representation as a semantic similarity task between
couples of short texts. In order to classify such couples of text frag-
ments into either semantically related pairs or non-related pairs,
the vector representations of these two texts are directly com-
pared. In this paper we use a simple threshold function on the
distance between the two text representations, as we want related
pairs to lie close to each other in their representation space, and
non-related pairs to lie far apart:

pair ifd(t;,t;) <6

. 2
non-pair if d(ty,t;) > 6 2)

gt tp) = {
In this expression t; and t, are two short text vector representa-
tions of dimensionality v, d : (x,y) € R2” — R* is a vector distance
function of choice (e.g. cosine distance, euclidean distance...), 0 is a
threshold, and g(-) is the binary prediction of semantic relatedness.

3.1. Basic architecture

As mentioned before, we will assign a weight to each word in a
text according to that word’s idf value. To learn these weights, we
devise a model that is visualized in Fig. 1. In the learning scheme,
we use related and non-related couples of text as input data. First,
the words in every text are sorted from high to low idf values.
Original word order is therefore discarded, as is the case in usual
standard aggregation operations. After that, every embedding vec-
tor for each of the sorted words is multiplied with a weight that
can be learned. Finally, the weighted vectors are averaged to arrive
at a single text representation.

In more detail, consider a dataset D consisting of couples of
short texts. An arbitrary couple is denoted by C, and the two texts
of C by C* and CP. We indicate the vector representation of word
j in text C¥ by C;?‘. All word vectors have the same dimension-
ality v. Each text C¥ also has an associated length n(C%), i.e. the
number of words in C¥. For now, in this section, we assume that


http://code.google.com/archive/p/word2vec

Download English Version:

https://daneshyari.com/en/article/535020

Download Persian Version:

https://daneshyari.com/article/535020

Daneshyari.com


https://daneshyari.com/en/article/535020
https://daneshyari.com/article/535020
https://daneshyari.com

