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a b s t r a c t 

The article introduces Quantum Clustering, a novel pattern recognition algorithm inspired by quantum 

mechanics and extend it to text analysis. This novel method improves upon nonparametric density es- 

timation (i.e. Parzen-window), and differentiates itself from it in a significant way, Quantum Clustering 

constructs the potential function to determine the cluster center instead of the Gaussian kernel func- 

tion. Specifically, detailed comparative analysis shows that the potential function could clearly reveal the 

underlying structure of the data that the Gaussian kernel could not handle. Moreover, the problem of 

parameter estimation is solved successfully by the numerical optimization approach (i.e. Pattern Search). 

Afterwards, the results of detailed comparative experiments on three benchmark datasets confirms the 

advantage of Quantum Clustering over the Parzen-window, and the additional trial on authorship identi- 

fication illustrates the wide application scope of this novel method. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Text clustering (document clustering) is a process of automatic 

document organization which is also representative of the pattern 

recognition problem. It plays a crucial role in text mining and, to 

this point, has been subjected to intensive examination [11,27,28] . 

Various clustering algorithms have been developed based on 

different principles, such as the hierarchical and partitional algo- 

rithms. However, researchers are still interested in developing new 

methods to promote the research on text clustering. Recently, a 

novel approach known as Quantum Clustering (QC) has emerged 

which derives from principles of quantum mechanics [9,10] . This 

novel method is developed based upon the conventional approach 

of density estimation and is considered as a new approach to 

nonparametric clustering methods [18] . As a result, the researchers 

will ask “Whether it could be applied to text analysis? And 

what about its performance on real task in comparison with the 
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classical density estimation approach?” This paper focuses on 

introducing this novel method into text analysis and giving a clear 

and detailed comparative analysis between Quantum Clustering 

and the conventional density estimator, in order to show the real 

advantage of Quantum Clustering and answer these questions. 

The most important conventional density estimation is referred 

to as the Parzen-window estimator. It is considered the main ap- 

proach in the nonparametric family. In Ref. [18] , the nonparametric 

methods approximate the probability density function without any 

underlying model assumption, and usually associate a kernel func- 

tion to each data sample. Typically, the commonly used Gaussian 

kernel is regarded as the kernel function, and this kind of kernel 

function depends on a single parameter (i.e. the width parameter). 

Based on the Parzen-window estimator, the Quantum Clustering is 

developed. 

The thinking of Quantum Clustering is inspired by the funda- 

mental physics principles (i.e. quantum mechanics). Different from 

the Parzen-window estimator, Quantum Clustering constructs the 

potential function to estimate the density distribution of the data 

points instead of the Gaussian kernel, since the potential function 

has the potential to reveal the underlying structure of the data. 

Due to these advantages, some researchers began to apply this 

method to image segmentation, signal processing, etc. [17,18] . 

Furthermore, the Dynamic Quantum Clustering (DQC) has been 

proposed [22–24] and successfully employed in analyzing big, 
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complex, real-world datasets obtained from various fields, such 

as X-ray nano-chemistry, condensed matter, seismology, biology, 

finance [25] , and information retrieval [5,6] . And also, researcher 

have focus on speeding it up by graphics processor [26] . Based 

on these works, we extended QC to text analysis in Ref. [15] . 

Furthermore, in this paper, detailed and full-scaled comparative 

analysis between QC and Parzen-window estimator were con- 

ducted. Moreover, we also compared QC with the common used 

DBSCAN algorithm. And, the problem of parameter estimation was 

solved successfully by the numerical optimization approach (i.e. 

Pattern Search). All of these have not been subjected to rigorous 

analysis in previous works. Experimental results show the QC 

outperformed the Parzen-window significantly. 

2. Method 

2.1. Principle of Quantum Clustering 

The inspiration of Quantum Clustering derives from the anal- 

ogy that exists between data points and particles in a certain state. 

According to the postulate of quantum mechanics, a quantum sys- 

tem evolves in space and time following the Schrödinger differen- 

tial equation. The Schrödinger equation describes the evolutionary 

process of a quantum mechanics system and is specified by a wave 

function. The Schrödinger equation can be written as various for- 

mulations in different context, and the time-independent version 

is given by Eq. (1) [8] 

Hψ ( x ) = 

(
− h̄ 

2 

2 m 

∇ 

2 + v (x ) 

)
ψ ( x ) = Eψ ( x ) (1) 

where H is the Hamiltonian operator, E is the eigenvalue energy 

level, � and m denote the Reduced Plank Constant and the mass 

of a particle respectively. The function ψ( x ) refers to the so-called 

wave function and corresponds to the eigenstate of the given quan- 

tum system. The function v ( x ) denotes the potential function, and 

∇ 

2 is the Laplacian. Conventionally, the potential v ( x ) is given and 

the equation is solved to find solutions ψ( x ). Such a function ψ( x ), 

can be assimilated with the kernel-based sum which depends on 

the given data points. 

Different from quantum physics, where we want to estimate 

the location of particles given their potential function v ( x ), in 

Quantum Clustering we solve the inverse problem. By considering 

the wave function ψ( x ) as an known condition of the Schrödinger 

equation, we aim to determine the potential v ( x ) in Quantum 

Clustering, which characterizes the data probability density func- 

tion [18] . Similar to particles in quantum physics, data points that 

are located in close proximation have close potential values. In 

this case, we can observe the analogy between clusters of data 

points and an electron cloud of hydrogen atoms illustrated in 

Fig. 1 . The atomic nucleus corresponds to the cluster center, 

and each position where the electron probably appears (white 

dot) corresponds to each data point. According to the laws of 

quantum mechanics, the atomic system is in the lowest energy 

level (ground state) when the electron stays in the lowest orbit. 

Conversely, if the electron transits to a higher orbit, the system 

will be activated to the higher energy state (excited state). In a 

similar way, the values of potential function v ( x ) calculated from 

the highest density data points reach the bottom, and increase 

with the decline of density of data points. Therefore, the cluster 

center could be revealed by the minima of v ( x ). That is exactly the 

most significant characteristic of v ( x ) as required. 

2.2. Algorithm 

The essential part of the algorithm is to calculate the potential 

function v ( x ) by Schrödinger equation. Given Gaussian kernel as 

Fig. 1. Electron cloud diagram of hydrogen atoms (available at http://baike.haosou. 

com/doc/history/id/168383 ). 

Eq. (2) for the wave function, and m = h̄ 2 /σ 2 , where σ denotes 

the width parameter. 

ψ ( x ) = 

∑ 

i 

e −( x −x i ) 
2 
/ 2 σ 2 

(2) 

Afterwards, we solve Eq. (1) for v ( x ) by next few steps. First, the 

Eq. (1) is rewritten as: 

Hψ ( x ) = 

(
−σ 2 

2 

∇ 

2 + v (x ) 

)
ψ ( x ) = Eψ ( x ) (3) 

Then, the v ( x ) could be solved as: 

v ( x ) = E + 

σ 2 

2 
∇ 

2 ψ ( x ) 

ψ ( x ) 
(4) 

Further, based on Eq. (1) , the first-order derivative of ψ( x ) is: 

ψ(x ) 
′ = 

∑ 

i 

(
e 
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2 

2 σ2 · − (x − x i ) 

σ 2 

)
(5) 

And the second-order derivative of ψ( x ) is: 

ψ(x ) 
′′ = 
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Thus, the v ( x ) could be solved as: 

v (x ) = E + 
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2 e 

−(x −x i ) 
2 
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where E is considered as constant, since they do not affect 

the topological structure of v ( x ). Thus, the final version of v ( x ) 

approximates to the last line in Eq. (7) . 

Generally, after we obtain the v ( x ), some classic optimization 

approaches can be employed to deduce the clustering allocation, 

which is intended to locate the minima according to their topo- 

graphic locations on the hypersurface of v ( x ). In our study, we uti- 

lized the classic BFGS (Broyden–Fletcher–Goldfarb–Shanno) algo- 

rithm which is a kind of Quasi-Newton methods [3] to address the 

problem. The details of the BFGS could be found in many academic 

literatures (e.g., [4,14] ). 

2.3. Potential function VS. Gaussian kernel 

Like the Gaussian kernel function in Parzen-window estima- 

tor, the potential function formulate a hypersurface from the given 
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