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a b s t r a c t 

When finding relationships in biological systems, we often describe hierarchies based on one facet of the 

data. However, when using this hierarchy to elucidate relationships between metadata, the distribution 

of metadata labels within the hierarchy may exhibit different levels of aggregation—uniform, random, or 

clumped. As of now, there exists no measure for finding the level of aggregation, or “clumpiness”, be- 

tween labels distributed among the leaves of a hierarchical container. We propose a clumpiness measure 

to aid in the quantification of relationships between metadata. We validated our measure with random 

trees and found that the measure is resistant to changes in the tree size, label size, and the number of 

types of labels, compared to the closest alternative measures. We used our clumpiness measure to quan- 

tify the relationships between light and heavy chains in human and mouse B cell and T cell receptor V 

genes based on their motifs. We found that the B cell heavy chains were the most aggregated while the 

T cell chains were the least aggregated and that the IGL chain was clumped the most with the T cell 

chains out of all of the B cell chains. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Biological systems are often described through hierarchical re- 

lationships of different labels. Due to the complex nature of bi- 

ological systems, we often describe these hierarchies using only 

a subset of the available information about each element in the 

dendrogram. For instance, we can create a phylogeny of differ- 

ent species based on their genes while at the same time retain- 

ing other metadata, or labels, about their behavior, survival, and 

phenotypes. However, unlike the gene data, these metadata labels 

may be distributed randomly, uniformly, or clumped throughout 

the hierarchical structure. In this paper, we present a novel mea- 

sure to quantify the extent that a hierarchical structuring of data 

describes a relationship of aggregation, or “clumpiness”, between 

the metadata labels with which its components are categorized. In 
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this fashion, we can unite the two levels of the structure—the in- 

formation from the data and the categorical information from the 

metadata. 

Let us consider the adaptive immune system as a general ex- 

ample of a multi-scale biological system. This system is comprised 

of several repertoires of immune cells with individual receptors of 

unique specificity for different antigens in the environment. In or- 

der to cover a wide range of antigens, the body generates a vast 

and diverse pool of differently responding cells called the immune 

repertoire of the body. Under specific conditions, these antigens 

can trigger competitive proliferation, mutation, and death in only 

a subset of the cells. The successful recognition of an antigen by 

a cell’s receptor leads to the cell dividing and producing its own 

lineage of cells responding to similar antigens. The resulting hier- 

archical structure is associated with metadata labels such as the 

tissue where one of the descendant cells is found, the function 

of that cell in the immune response (such as an effector cell or 

a memory cell), or its fate—death or division. Because the meta- 

data labels are of a different scale than the data (in this scenario 

the pattern of mutations in a given cell), it is possible to have the 

labels widely dispersed in the container (here a hierarchical data 

structure) but be close together in small clumps as opposed to 
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being randomly or uniformly distributed. These scenarios appear 

throughout the biological domain. 

Another hierarchical container of data we may use, in order to 

capture the different possible “behaviors” of the cells, is to clus- 

ter the cells by their common gene expression patterns [1] . In this 

case, the labels describe a common progenitor (ancestor) cell or 

varying levels of mutation in its DNA. Finally, we will look specif- 

ically in this paper at the hierarchical clustering of sequence frag- 

ments. Both in our example and in other biological examples, it is 

commonly considered that motifs can be indicative of binding ca- 

pability and interaction potential. In this case, we hypothesize that 

a group of cells with similar behaviors are motivated by a subset 

of common motifs with related structures. As binding of the re- 

ceptor and survival of the cell depend on the receptor structure, 

in order to look at the relationships between the different parts 

of the receptors we need to account for the relationship between 

sequence fragments. As such, we must find the relationship (con- 

tainer) between each region of the receptor (data) before quanti- 

fying the overall distribution and degree of aggregation of chains 

(label). 

As shown in these examples, although the data is clustered 

together as the result of the tree, we can ask additional ques- 

tions about the relationship between the metadata labels within 

the tree. More specifically, we would like to quantify the degree 

of aggregation, or “clumpiness”, between the labels by using the 

structure of the tree generated by the pairwise relationship of the 

data. While there is a wide range of metrics to measure aggrega- 

tion, they are focused on the spatial distribution in two dimensions 

[2–9] . As of now, there exists no measure for the quantification 

of aggregation in a distribution within hierarchical trees. Further- 

more, previous studies attempting to find patterns between meta- 

data in hierarchical structures are based on grouping similar sec- 

tions of the container rather than finding the impact of dispersion 

on the metadata and are heavily focused on visualization [10–13] . 

In this paper, we will demonstrate the power of such an analysis 

by focusing on the last example, where we can find the relation- 

ship between immune receptors by their sequence fragments. 

In order to look at the distribution of labels, we need new tools. 

We propose our clumpiness measure as a way to measure the de- 

gree of aggregation between labels in a hierarchical container. Our 

measure is robust to the container size, data size, and label size, 

and thus is scale invariant. In addition, our measure is general- 

izable to more than two labels and is efficiently computable and 

maintainable. In this paper, we will (1) describe the measure, (2) 

show the generalization, (3) demonstrate the use of the measure 

to find the relationship between receptor chains, and (4) quantify 

the response of the measure to noise and sizes. 

2. Notations and definitions 

Suppose we have a rooted binary tree with a set of vertices V . 

Let us now call I ⊆V the set of non-leaf and non-root vertices of the 

tree, and T ⊆V all of the leaf vertices whose parent is in I (thus, this 

includes all the leaf vertices, except the leaves that are children 

of the root, since the root is not in I ). Now, let us assume M ⊆T 

to be the subset of leaves of interest, our “relevant” leaves, and 

L = { L 1 , L 2 , . . . , L n } to be a partition of M (i.e., M = 

⋃ n 
i =1 L n ). This 

partition can represent, for example, a set of labels that we care 

about in our application domain. We call these labels “relevant” as 

they contain our relevant leaves. We can now transform the data 

from our domain into a hierarchical container. 

We specifically focus on the domain of immunology in this 

study. The B and T cells are white blood cells with cell surface re- 

ceptors, the B cell receptor (BCR) and T cell receptor (TCR) respec- 

tively, that bind to antigen which can invoke an immune response. 

These receptors are quite diverse and each B and T cell express just 

one type of this receptor. The BCR is composed of a heavy chain 

(IGH) and a light chain (either IGK or IGL), while the analagous 

chains on the TCR are the β chain (TRB) and the α chain (TRA). 

As we want to compose our hierarchical container from structural 

units, we use subregions of these receptor genes in our clustering. 

These subregions, we call “protein fragments”, are 20 amino 

acid long sequences taken from an overlapping sliding window 

across an amino acid receptor sequence. Then our hierarchical clus- 

tering generates clusters that are each a group of protein frag- 

ments with similar sequences (further explained in Section 5.1 ). 

The leaves in the hierarchical container represent these clusters, 

where each parent contains the union of the children’s protein 

fragments. In this way we have completed the transformation of 

the data into a hierarchical container of relationships. 

3. Clumpiness measure 

3.1. Definition 

The clumpiness of the set of leaves M when partitioned accord- 

ing to L in a k -ary tree is defined as 

C(L ) = 

1 

n 

( 

n ∏ 

i =1 

x 

y i 

) 1 /n 

(1) 

That is, the geometric mean of x weighted by the frequency of 

each label, y i . The result is set between 0 and approximately 1 by 

normalizing by the total number of labels, n . The numerator x is 

intuitively the weighted number of viable vertices in I weighted 

by y i , resulting in 

x = 

1 

| I| 
∑ 

v ∈ I 
δ(v ) w (v ) (2) 

y i = 

| L i | 
| T | (3) 

We say that a non-root vertex v is “viable” if δ(v ) = 1 , meaning 

that v has at least one vertex of each label in its descendant leaves. 

So, 

δ(v ) = 

{
0 : 

∨ n 
i =1 | D (v ) ∩ L i | = 0 

1 : otherwise 
(4) 

where D (v ) is the set of descendant leaves of vertex v contained 

in M , our relevant leaves. We then weigh the vertex if it is viable 

by the number of vertices of each relevant label and how far away 

they are from the vertex in question 

w (v ) = 

∑ 

i ∈ D (v ) 

( ∏ 

j∈ E(v ,i ) 

1 

c( j) 

) 

, (5) 

where E(v , i ) is the set of vertices on the shortest path from (and 

including) v to (but not including) the relevant leaf i and c ( j ) is the 

number of children of j . We weigh by the number of children as 

we want the maximum value of our vertex of interest to be 1, so 

we keep dividing the values of the descendant vertices based on 

branching. 

If we want to find the clumpiness of a label L i with itself we 

need to change our approach: the more clumpy L i is with other 

labels, by definition the less clumpy L i is with itself. Using this 

property, we can then have L contain two sets—those leaves in L i 
and all other leaves. Then the clumpiness of L i with itself becomes 

1 − C(L ) . For the sake of simplicity, we will focus on the case of a 

rooted full binary tree containing 2 labels. 
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