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a b s t r a c t 

Manifold learning techniques have shown a great potential for computer vision problems; however, they 

do not extend easily to points different from the ones on which they were trained (out-of-sample). On 

the other hand, extreme learning machine (ELM) is a powerful method that allows to perform nonlin- 

ear, multivariate regression. This paper discusses the effectiveness of ELM for the out-of-sample problem 

and compares it to the state-of-the-art solution : the Nyström extension. Both methods are evaluated 

through the reconstruction of the manifold learnt using Laplacian eigenmaps, via experiments on a wide 

range of publicly available image datasets. We show that when reducing the data dimension to its intrin- 

sic dimension, the ELM offers a better approximation of the embedded coordinates, also with reduced 

computational costs during testing. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In computer vision and pattern recognition, many problems are 

high dimensional, meaning that observations may be described 

by a large number of measures or variables. In order to find 

a discriminative description of the data and to get rid of the 

curse of dimensionality, one may search to reduce its dimension. 

Dimensionality reduction, also known as Manifold Learning, is also 

useful for data denoising and visualization. Spectral methods are a 

family of techniques based on the spectral decomposition (i.e. into 

eigenvectors and eigenvalues) of the affinity matrix between the 

N points (or observations) of the dataset. Linear methods, such as 

principal component analysis (PCA) or multidimensional scaling, 

consider that data live in a linear subspace and implicitly assume 

a multivariate gaussian distribution. In practice this may not al- 

ways be the case, and these assumptions are ignored by nonlinear 

approaches, such as spectral methods. Spectral methods are a 

family of non linear dimension reduction techniques, which are 

based on a feature matrix, whose spectral decomposition yields 

the reduced dimensionality dataset. These methods can be viewed 

as kernel PCA described on specially constructed Gram matrices 

[11] . In image analysis, these nonlinear methods have shown their 

potential in, among others, facial recognition [41] , hyperspectral 

image classification [24] , gait recognition [7] , hand-written char- 
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acter recognition [32] , and several medical imaging tasks such as 

segmentation or registration [1,26] , data clustering [23] . Example 

of spectral methods include Isomap, Laplacien eigenmaps, Local 

Linear Embedding (LLE), diffusion maps, Local Tangent Space 

Alignment (LTSA), Maximum Variance Unfolding (MVU) [21,28,36] . 

The most popular for image applications are Isomap and Laplacian 

eigenmaps and in the following we will restrict our experiments 

to Laplacian eigenmaps. 

One of the drawbacks of nonlinear spectral method is that they 

do not allow to embed points which are not part of the initial 

set, contrary to linear methods such as PCA. Out-of-sample pro- 

jection is necessary when the affinity matrix is built offline for ex- 

ample, but also when the number of observations is very high, an 

increasingly common situation with today’s large amount of data 

and streaming requirements. In this case, data may be split into 

two subsets, one whose reduced coordinates are computed with 

the dimensionality reduction technique (this part plays the role of 

a training set), and a bigger one, whose reduced coordinates are 

estimated using an out-of-sample projection. Computing the em- 

bedding on the smaller subset allows to reduce computation costs 

linked to the spectral decomposition [44] . 

Various solutions have been proposed for out-of-sample 

[2,5,12,20,31,35,45,46] . Bengio et al’s influential paper established 

much of the framework for this area [4] . This work makes use 

of the Nyström extension, a method used to speed up kernel 

methods computations. It is thus based on the assumption that 

the similarity measure used to compute the embedding may be 

expressed as a kernel function. The out of sample projection 

is computed as a linear combination of the eigenvectors of the 
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feature matrix, weighted with a kernel function expressing the 

similarities between the out-of-sample point and the points in the 

training set. The problem is the tuning of the parameters, usually 

done in a heuristic way. In [31] , authors propose to use sparse grid 

functions to approximate the eigenfunctions corresponding to the 

Laplacian eigenmap embedding. The proposed framework is inde- 

pendent from the number of training data points but is dedicated 

to the Laplacian eigenmap embedding. In [33] , the data are repre- 

sented with sparse coding. While no hyperparameter needs to be 

tuned, computation time is very high due to L1 minimization. 

Nonparametric out-of-sample methods, such as Nyström’s, re- 

quire access to the data, which can be costly for large datasets. 

Parametric solutions have been developed, that derive an explicit 

mapping function between the high-dimensional space and the 

low-dimensional space: some approaches for example integrate 

several local feature extractor into a global representation [37,39] , 

others propose a nonlinear dimension reduction algorithm is pro- 

posed, that learns a parametric mapping to recover a global low 

dimensional space [40] . Machine learning approaches have also 

been investigated, such as in [10] , where a three-layered percep- 

tron network is trained on the embedding. Whereas it is a generic 

approach that can suit any manifold learning technique, it suffers 

from some limitations (e.g. iterative tuning of the parameters, long 

convergence times) and is not shown to outperform linear fitting 

error, in terms of reconstruction accuracy. 

Some neural network methods are more computationally ef- 

ficient, such as the family of randomness-based learning net- 

works, among which QuickNet [42,43] , Random Vector Feature 

Link (RVFL) [6,19,30] , Random Neural Networks (RNN) [34] and Ex- 

treme Learning Machine (ELM) [13,18] . All these methods differ by 

the way parameters are optimized, among others [14] . In particu- 

lar, ELM is a learning method to train single-hidden layer feedfor- 

ward neural networks (SLFN) that does not require iterative tuning, 

which results in a high learning speed. The ELM method has uni- 

versal approximation capability of approximating any target con- 

tinuous function, and of classifying [15,17] . In this respect, ELM can 

be applied to any approximation problem, and in particular to out- 

of-sample approximation. However (to the best of our knowledge) 

ELM has never been investigated for this task. Our aim is thus to 

show that ELM can be used in practice for out-of-sample approxi- 

mation, under its multivariate regression form, and what its usage 

implies in terms of accuracy and computation time. This is why we 

explore in this paper the capabilities of ELM as an out-of-sample 

method and compare it to the classical Nyström extension, on em- 

bedded spaces built with the Laplacian eigenmaps. 

When assessing an out-of-sample method, the protocol is usu- 

ally as follows: the N points of the datasets are split into a training 

set of N − m points and the out-of-sample group of m points. An 

embedding is computed with the whole dataset (in our case with 

Laplacian eigenmaps), and will serve as reference. Another embed- 

ding is computed with only the N − m points of the training set. 

The remaining m points are then projected using an out-of-sample 

method (either Nyström or ELM), and their estimated coordinates 

are compared to those obtained with the reference embedding. 

Our comparison of Nyström vs ELM measures the projection accu- 

racy for the out-of-sample points onto the manifold and the influ- 

ence of the number of samples in the training set, the number of 

dimensions to be reduced, and computation time, both for testing 

and training. 

The remainder of the paper is as follows. The Nyström ex- 

tension and ELM theoretical background adapted to out-of-sample 

projection are presented in Sections 2 and 3 , respectively. The ex- 

perimental protocol is described in Section 4 , followed by results 

and discussions which are reported in Section 5 . We conclude in 

Section 6 . 

2. Nyström extension 

In the following, let D denote the dimension of the initial set, N 

the number of points, x i a point included in R 

D and X the D × N 

training matrix containing the points. Let y i denote the coordinates 

in the embedded space, included in R 

d where d is the reduced di- 

mension that corresponds to x i . At last let x N+1 denote a point not 

belonging to the initial set of points, i.e. an out-of-sample point; 

the goal is to estimate its reduced coordinates y N+1 . 

The Nyström method is a method to speed up kernel methods 

computations, by performing the eigendecomposition on a subset 

of examples. It was used in [4] to propose an out-of-sample ex- 

tension to kernel-based spectral methods. Let us recall the general 

framework in which spectral dimension reduction techniques can 

be cast. Let W be a symmetric matrix of size N × N , expressing 

the affinity between the N points of the training set. Let K ( ·, ·) 
denote a data-dependant kernel function giving rise to matrix W 

with W i j = K(x i , x j ) . 

Let ( v k , λk ) denote the eigenvector and eigenvalue pairs such 

that Wv k = λk v k . For dimensionality reduction, retain the d largest 

(or smallest, depending on the method) eigenvalues and their as- 

sociated eigenvectors. The embedding (or reduced coordinates) of 

each training sample x i is the i th line of a matrix U that contains 

the d eigenvectors in columns. 

The Nyström extension for an out-of-sample point is only a 

weighted sum of the previously calculated eigenvectors and eigen- 

values. More precisely the k th reduced coordinate of the out-of- 

sample point is approximated as: 

y N+1 ,k = 

1 

λk 

N ∑ 

i =1 

v ki K(x N+1 , x i ) for all k = 1 , .., d (1) 

Or, in matrix form, 

ˆ y N+1 = 

1 √ 

�
U 

T K N+1 (2) 

where 1 √ 

�
= diag ( 1 √ 

λ1 

, · · · , 1 √ 

λd 

) , U is the matrix whose columns 

are the eigenvectors, and K N+1 = [ K(x N+1 , x 1 ) · · · K(x N+1 , x N )] . In 

[4] , Bengio et al. have designed a formulation of K ( ·, ·) for MDS, 

Laplacian eigenmaps [3] , Isomap and LLE. The Nyström extension 

is applicable to any technique that kernel function. This method 

requires some parameter choice for kernel K ( ·, ·), usually made 

heuristically. 

3. Extreme learning machine for out-of-sample approximation 

We first present ELM basics and then how to use it for out-of- 

sample extension. Contrary to the Nyström extension that relies on 

the embedding obtained from the training set, the ELM just trains 

on the data, as any multivariate regression. 

The output function of ELM for an input x can be written as 

[13] : 

f L (x ) = 

L ∑ 

i =1 

βi h i (x ) = h (x ) β (3) 

where β = [ β1 ...βL ] is the output weight vector between the L - 

neuron layer and the output nodes, and h (x ) = [ h 1 (x ) ...h L (x )] is 

a nonlinear feature mapping, with each function h i defined as: 

h i (x ) = G (a i , b i , x ) (4) 

where G is for example a sigmoid function defined as G (a i , b i , x ) = 

1 
1+ exp (−a i ·x + b i ) ; and the vector a i of length L and the bias term 

b i are the randomly generated parameters of the hidden node i . 

Training the ELM includes two stages, the random feature map- 

ping and linear parameter solving. The parameters ( a i and b i ) of 



Download English Version:

https://daneshyari.com/en/article/536158

Download Persian Version:

https://daneshyari.com/article/536158

Daneshyari.com

https://daneshyari.com/en/article/536158
https://daneshyari.com/article/536158
https://daneshyari.com

