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a b s t r a c t

The massive amount of high-dimensional data in science and engineering demands new trends in data analy-

sis. Subspace techniques have shown remarkable success in numerous problems in computer vision and data

mining, where the goal is to recover the low-dimensional structure of data in an ambient space. Traditional

subspace methods like PCA and ICA assume that the data is coming from a single manifold. However, the

data might come from several (possibly intersected) manifolds (surfaces). This has caused the development

of new nonlinear techniques to cluster subspaces of high-dimensional data. In this paper, we propose a new

algorithm for subspace clustering of data, where the data consists of several possibly intersected manifolds.

To this end, we first propose a curvature constraint to find the shortest path between data points and then

use it in Isomap for subspace learning. The algorithm chooses several landmark nodes at random and then

checks whether there is a curvature constrained path between each landmark node and all other nodes in

the neighborhood graph. It builds a binary feature vector for each point where each entry represents the

connectivity of that point to a particular landmark. Then the binary feature vectors could be used as a input

of conventional clustering algorithms such as hierarchical clustering. The performed experiments on both

synthetic and real data sets confirm the performance of our algorithm.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The amount of collected data has been increasing exponen-

tially over the last decade. In many areas of machine learning,

computer vision and data analysis, the data is represented by very

high-dimensional features. For instance, images and videos are

represented by millions of pixels. Therefore, the computational com-

plexity of the data is a dramatic challenge in data processing which is

referred to the “curse of dimensionality”. However, high-dimensional

data in most cases comes from low-dimensional structures instead of

been uniformly distributed in ambient space [40]. Hence, many tech-

niques have been proposed recently to recover the low-dimensional

structure of the data from ambient space, the so-called subspace

learning. Some work assume that the data is coming from a sin-

gle structure like manifold learning techniques [40]. On the other

hand, some methods assume that the data is coming from several

structures.

In this paper, we propose a novel technique in recovering a

low-dimensional representation of the data coming from several
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(possibly) intersected structures (surfaces). Therefore, the problem is

multi-manifold clustering, which aims to label each data point ac-

cording to the surface it comes from. This problem may exist in a

number of applications, such as the extraction of galaxy clusters [24],

road tracking [14], and target tracking [2–5,28]. For instance, in mo-

tion segmentation [13,22,36] and face recognition [6,12,20], the un-

derlying surfaces are usually assumed to be linear or affine. In our

approach, the main assumption is that the surfaces are smooth. In

Fig. 1, the input and output of our algorithm is depicted. Here, we as-

sume that the data is coming from three smooth manifolds (left) and

the goal is to distinguish them with different labels/colors (left).

Several techniques have been proposed for multiple manifold

clustering. However, most methods are designed for the case where

manifolds do not intersect [11,25] or the manifolds that intersect

have different either intrinsic dimensions or densities [1,16]. Basi-

cally, there are a few approaches aiming to recover the intersected

manifolds. For instance, Souvenir et al. [31] implement a variant of

K-means [7,8,32] where the cluster centers are considered as mani-

folds. Guo et al. [19] propose to minimize a (combinatorial) energy

that includes local orientation information by using a tabu search. Re-

cently, the state-of-the-art methods are based on local Principal Com-

ponent Analysis (PCA). For example, the multi-scale spectral method

of [21] uses the clustering routine of [17], which is developed in the
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Fig. 1. Simulated data illustrating the problem of multi-manifold clustering. Left:

Input data; Right: Output data obtained by our method.

context of semi-supervised learning and is inspired by the works of

[38] and [18].

We propose a remarkably different approach for the problem

of clustering multiple intersected manifolds based on connecting

points to landmarks via curvature-constrained paths. Our approach

can be interpreted as a constrained variant of [33], where we uti-

lize a constrained shortest path distances. Isomap has been specif-

ically designed for dimensionality reduction (or manifold learning)

in a single-manifold setting used in different applications [26,35,39].

However, in particular, it cannot handle a self intersecting manifold .

In our approach, the curvature constraint on paths prevents connect-

ing points from one cluster to points from a different intersecting

cluster. The algorithm is implemented as a simple variation of Dijk-

stra’s algorithm.

The rest of the paper is organized as follows. In Section 2, we

provide the related work in the area of multiple manifold cluster-

ing. Section 3 explains the notion of curvature constrained shortest-

path and it’s connection to the curvature constrained shortest-path.

In Section 4, we introduce our algorithm for multi-manifold cluster-

ing. In Section 5, we provide the detailed information about the per-

formed experiments on both synthetic and real data sets. There we

compare the performance of our algorithm with several other algo-

rithm. In addition, we discuss the robustness of our method to noise.

We conclude our paper and provide an outline for future work in

Section 6.

2. Related works

The last decade saw a flurry of propositions aiming at high-

dimensional data clustering when the underlying clusters are not

convex and particularly, in the situation where the points are sam-

pled near low-dimensional structures. In the previous section, a few

related works were introduced and now in this section, we elaborate

on three of them, namely K-Manifolds (KM) [31], Spectral Curvature

Clustering (SCC) [10], and Spectral Multi-Manifold Clustering (SMMC)

[38]. Furthermore, we use them as benchmarks in our experiments.

Our choice was dictated by performance, code availability and rele-

vance to our particular setting.

The method of [21] renders impressive results but is hard to tune

and relies on many parameters. The method of [18] is very similar to

that of [38] and the code was not publicly available at the moment of

writing this paper. The other methods for multi-manifold clustering

(to the best of our knowledge) were not designed to resolve intersec-

tions of clusters of possibly identical intrinsic dimensions and sam-

pling densities. Therefore, we chose the subspace clustering method

of [10] among a few others methods that perform well in this context.

2.1. K-Manifolds

Souvenir et al. [31] suggest an algorithm that mimics K-means

by replacing centroid points with centroid sub-manifolds. The

method starts like Isomap by building a neighborhood graph and

computing shortest path distances within the graph. After randomly

initializing a K-by-n weight matrix, W = (wki), where wki represents

the probability that point i belongs to the kth cluster, it alternates be-

tween an M-Step and an E-Step. In the M-Step, for each k, the points

are embedded in R
K using a weighted variant of multidimensional

scaling using the weights (wki : i = 1, . . . , n). In the E-Step, for each

k and i, the normal distance of point xi to the cluster k is estimated

as

δki =
∑

j wk j(d(xi, x j) − dk(xi, x j))∑
j wk j

,

where d(xi, xj) denotes the shortest path distance in the neighbor-

hood graph and dk(xi, xj) denotes the Euclidean distance in the kth

embedding, between points xi and xj. The weights are then updated

as wki ∝ exp ( − d2
ki

/σ 2) such that
∑

k wki = 1 for all i, where σ 2 is

chosen automatically.

2.2. Spectral curvature clustering

Chen et al. [10] propose a spectral method for subspace clus-

tering based on the assumption that the underlying surfaces are

affine. However, we compare our method to theirs when the sur-

faces are affine and also when the surfaces are curved. The lat-

ter is done as a proof of concept, whereas it is clear that this

method cannot handle curved surfaces, like any other method for

subspace clustering. The procedure assumes that all subspaces are

of the same dimension d, which is a parameter of the method.

For each (d + 2)-tuple, xi1
, . . . , xid+2

, it computes a notion of curva-

ture Ci1,...,id+2
which measure how well this (d + 2)-tuple is approxi-

mated by an affine subspace of dimension d. After reducing the ten-

sor C = (Ci1,...,id+2
: it = 1, . . . , N) spectral graph partitioning [25] is

applied.

2.3. Spectral multi-manifold clustering

Wang et al. [38] propose a spectral clustering method using a dis-

similarity function that factors in the Euclidean distance and the dis-

crepancy between the local orientation of the data points. The sur-

faces are assumed to be of the same dimension d and this number

should be known as a prior. First, a mixture of probabilistic prin-

cipal component analyzers [34] are fitted to the data, approximat-

ing the point cloud by a union of d-planes. This is used to estimate

the tangent subspace at each data point. The dissimilarity between

two data points is then an increasing function of their Euclidean dis-

tance and also the principal angles between their respective affine

subspaces. These dissimilarities are fed into the spectral graph parti-

tioning method proposed by [25].

2.4. Spectral clustering

Spectral clustering has been widely used as a clustering method

for high-dimensional data. First, it forms a similarity matrix of the

points where elements of this matrix are the relative similarity be-

tween each pair of points in a high-dimensional space. Then it com-

putes the normalized or unnormalized Laplacian matrix L. By com-

puting the first K eigenvectors of L we form a new matrix U, where

the number of columns of U is equal to K. The rows of U are the

low-dimensional representation of high-dimensional data. By apply-

ing the k-means algorithm to the rows of U we extract the cluster

membership for each point. Spectral clustering is closely related to

the nonlinear dimensionality reduction methods like locally-linear

embedding.
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