
Chemical Physics Letters 671 (2017) 44-48

Contents lists available at ScienceDirect

Chemical Physics Letters

journal homepage: www.elsevier.com/locate/cplett

Ambrish Kumar Srivastava, Abhishek Kumar, Neeraj Misra*

Department of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India

ARTICLE INFO

Article history: Received 28 October 2016 In final form 7 January 2017 Available online 9 January 2017

Keywords: Superhalogen Substitution Benzene Aromaticity Ab initio calculations

1. Introduction

Benzene ring is significantly stabilized due to complete delocalization (resonance) of π -electrons, which reduces its reactivity toward addition reactions. Note that benzene possesses high ionization energy (IE) and no positive electron affinity (EA). This is why whole chemistry of benzene is based on electrophilic substitution reactions. These substitution reactions are greatly influenced by the functional groups attached to the ring. The electron-withdrawing (EW) functional groups such as -F, -CN, -NO₂, -CF₃, etc. are known as ring deactivating since they pull electrons from the ring and deactivate it, i.e., make the reaction slower. Many studies [1–3] suggest that a group substituting a hydrogen atom of benzene affect only weakly the π -electron delocalization in the ring. This reflects the tendency of aromatic systems to retain their initial π -electron structure during the reaction course, leading to aromatic substitution. However, it has been noticed [3] that the substitution by EW groups increases the ionization energy and dipole moment of the ring. This effect becomes more pronounced with strong EW groups. The $-\!F$ and -CN are stronger EW substituents due to their high EA. There are some species possessing higher EA than Cl, which are referred to as superhalogens.

The concept of superhalogen was proposed by Gutsev and Boldyrev in 1981 [4], and experimentally verified by Wang et al. in 1999 [5]. Superhalogens have been subject of frequent investigations in the last three decades [6-12]. Owing to their large EA,

* Corresponding author. *E-mail address:* neerajmisra11@gmail.com (N. Misra).

ABSTRACT

We perform *ab initio* MP2/6-311++G(d,p) calculations to analyze the molecular properties and aromaticity of NO₃, BO₂ as well as BF₄ superhalogen substituted benzene and compare them with well known electron withdrawing group substituted benzene such as C₆H₅F and C₆H₅CN in neutral and ionic forms. It has been noticed that the properties (including aromaticity) of C₆H₅BO₂ closely resemble those of C₆H₅F and C₆H₅CN. On the contrary, C₆H₅NO₃ possesses some quite different properties such as high electron affinity, small frontier orbital energy gap and enhanced aromaticity. It is also revealed that C₆H₅BF₄ exists only in the form of C₆H₅F···BF₃ complex.

© 2017 Elsevier B.V. All rights reserved.

superhalogens possess capability to oxidize both Xe atom and O_2 molecule simultaneously [13] as well as ionize benzene ring [14]. Recently, it has been noticed [15,16] that the protonation of superhalogen anions leads to superacids, which are more acidic than pure sulphuric acid, the strongest mineral acid. Superhalogens have been employed as building block of new electrolytic salts for lithium ion batteries [17,18] as well as new materials for hydrogen storage [19]. The study of superhalogen is an increasingly interesting as well as rapidly growing area of research. In this letter, we discuss the substitution of superhalogens on benzene and compare with those of strong EW group substituted rings. We have chosen BO_2 , NO_3 and BF_4 superhalogens as substituent, and compare them with F and CN group substituent.

2. Computational details

All functionalized benzene, C_6H_5X (X = F, CN, NO₃, BO₂ and BF₄) were studied using the second order Møller-Plesset perturbative (MP2) approach [20] and 6-311++G(d,p) basis set in Gaussian 09 program [21]. The total energy and geometry have been obtained without any symmetry constraints in the potential energy surface. The vibrational analysis has been performed to ensure that all structures belong to true minima. The (adiabatic) EA of X has been calculated by the difference of the total electronic energy of X and its anion (X⁻) at their equilibrium geometries. The aromaticity of ring has been analyzed by harmonic oscillator model of aromatic-ity (HOMA) index [22,23] and nucleus independent chemical shift (NICS) [24,25] value. NICS is computed at the centre of ring plane using gauge independent atomic orbital (GIAO) approach. The HOMA index for six-membered ring is computed by:

 $HOMA = 1 - \left(\alpha/6\right) \sum \left(\textit{R}_{opt} - \textit{R}_{i}\right)^{2}$

where α is an empirical constant such that HOMA = 0 for nonaromatic systems and HOMA = 1 for aromatic system with all bond lengths (R_i) of the ring equal to the optimal value (R_{opt}) as reported [22,23].

3. Results and discussion

We start our discussion considering the electron-withdrawing groups. F and CN both need exactly one electron to complete their octet, consequently, they possess large EA values. From Table 1, the adiabatic EA of CN is found to be even larger than F. This is only group whose EA exceeds that of F and therefore, it is also referred to as pseudohalogen group or halogenoid [26,27]. Like F and CN, superhalogens also require one electron to be stabilized. The equilibrium structures of NO₃, BO₂ and BF₄ anions are displayed in Fig. 1. The adiabatic EAs of NO₃, BO₂ and BF₄ along with corresponding experimental values are also listed in Table 1. Since precise EA calculation is not our objective, it should be noted that our calculated electron affinities of F and NO_3 are underestimated whereas those of CN and BO₂ are overestimated when compared with their latest experimental values available [28-31] (see Table 1). Therefore, NO₃, BO₂ and BF₄ possess fairly large EA and behave as superhalogens.

Now we discuss the properties of F and CN substituted C₆H₆. The optimized structures of C₆H₅F and C₆H₅CN as well as their anions and cations are displayed in Fig. 2. These structures are planar in which the bond length C_6H_5 —X (X = F) is found to be 1.352 Å, which is equal to its anion but reduced to 1.313 Å for cation. This trend is slightly different for X = CN in which the bond length C_6H_5 —X (1.437 Å) is reduced to 1.419 Å in both anion and cation. The ring bond lengths for C_6H_5F are found in the range 1.392– 1.400 Å (neutral), 1.391–1.401 Å (anion), 1.354–1.449 Å (cation). For C₆H₅CN, the bond lengths range become 1.397–1.406 Å (neutral), 1.358–1.433 Å (anion) and 1.378–1.438 Å (cation). The adiabatic IE and EA of C₆H₅X are listed in Table 2. Our calculated IE values of C₆H₅F (9.41 eV) and C₆H₅CN (10.29 eV) slightly overestimate corresponding experimental values, 9.35 eV [32] and 10.13 eV [33]. The IE and EA values of C₆H₅CN are only slightly larger than that of C_6H_5F . The energy gap (E_{gap}) between HOMO and LUMO is an important parameter to analyze chemical reactivity of molecules. According to Pearson [34], molecules with larger E_{gap} values are chemically more hard and hence, less polarizable. C_6H_5CN possesses larger E_{gap} value than C_6H_5F , although difference is only 0.2 eV. Interestingly, the dipole moment (μ) of C₆H₅CN (5.08 D) is much larger than that of C_6H_5F (1.97 D). This suggests that C₆H₅CN is highly polar molecule. The aromaticity of C₆H₅X is quantified by HOMA indices and NICS values, also listed in Table 2. HOMA index provides a structural measure of aromaticity, which reflects the bond length equalization within the ring. The NICS is an indirect but the most popular measure of aromaticity, which takes ring currents into account. The systems with more negative NICS values are more aromatic and vice versa. We have listed NICS (which is contributed by sigma and pi electrons) and its z-

Table 1

Adiabatic electron affinity (EA) of various substituents along with superhalogens.

Group	Calculated EA (eV)	Experimental	
		EA (eV)	Ref.
F	3.24	3.40	28
CN	4.48	3.86	29
NO ₃	3.45	3.94	30
BO ₂	4.97	4.46	31
BF ₄	6.73	-	-

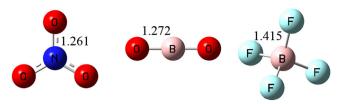


Fig. 1. The equilibrium structures of NO₃, BO₂ and BF₄ superhalogen anions.

component (NICS_{zz}, which is mainly contributed by pi electrons) at the ring centre. Note that the HOMA and NICS values suggest that C_6H_5F is more aromatic than C_6H_5CN , mainly due to contribution of pi electrons. Below we discuss the NO₃, BO₂ and BF₄ super-halogen monosubstituted benzene.

3.1. NO_{3} substituted benzene ($C_6H_5NO_3$)

The equilibrium structures of C₆H₅NO₃ with its anion and cation are displayed in Fig. 3, with C₆H₅-NO₃ bond length of 1.479 Å (neutral), 1.495 Å (anion) and 1.486 Å (cation). Like C₆H₅F and C_6H_5CN , the rings are planar with bond lengths of 1.393–1.400 Å (neutral), 1.394–1.402 Å (anion) and 1.380–1.453 Å (cation). Both IE and EA values of $C_6H_5NO_3$ are larger than those of C_6H_5F and C_6H_5CN . This may suggest that $C_6H_5NO_3$ is much reactive with the tendency to accept the electrons. This increased reactivity of $C_6H_5NO_3$ is also reflected in its smaller E_{gap} value (almost half of C_6H_5CN). Like C_6H_5CN , however, $C_6H_5NO_3$ is polar due to large μ value (4.72 D), unlike C₆H₅F. Even more interesting are HOMA and NICS values. For instance, HOMA value of C₆H₅NO₃ (0.98) is larger than those of $C_6H_5CN(0.95)$ and $C_6H_5F(0.97)$ which suggests that $C_6H_5NO_3$ is more aromatic than C_6H_5CN and C_6H_5F . This is also supported by their NICS and NICS_{zz} values. The enhanced aromaticity of C₆H₅NO₃ is mainly due to pi electrons.

3.2. BO_{2} , substituted benzene ($C_6H_5BO_2$)

Fig. 3 also displays the optimized structures of $C_6H_5BO_2$ as well as its anion and cation such that the C₆H₅-BO₂ bond length is 1.399 Å (neutral), 1.355 Å (anion) and 1.345 Å (cation). Like C_6H_5F , C₆H₅CN and C₆H₅NO₃, neutral and cationic C₆H₅BO₂ structures possesses the planar ring, with the bond lengths of 1.394-1.400 Å and 1.397–1.411 Å, respectively, but the ring is distorted from planarity by around 50° degree in anion. The IE of C₆H₅BO₂ is comparable to that of C_6H_5F but EA is slightly larger than that of C_6H_5CN . Its E_{gap} is comparable to that of C₆H₅CN (slightly larger than that of C₆H₅F). Furthermore, the μ value of C₆H₅BO₂ (4.87 D) is also comparable to that of C_6H_5CN (much larger than that of C_6H_5F). Even more interesting are HOMA and NICS values. For instance, HOMA value of $C_6H_5NO_3$ (0.98) is larger than those of C_6H_5CN (0.95) and C_6H_5F (0.97) which suggests that $C_6H_5NO_3$ is more aromatic than C₆H₅CN and C₆H₅F. This may suggest that the molecular properties of C₆H₅BO₂ closely resemble those of C₆H₅CN. However, HOMA and NICS values reveal that the aromaticity of C₆H₅BO₂ range between those of C₆H₅F and C₆H₅CN.

3.3. BF_4 , substituted benzene ($C_6H_5BF_4$)

BF₄ belongs to a rich class of superhalogen, as most of the superhalogens employ F ligands [6–12]. The optimized structures of $C_6H_5BF_4$ along with their anion and cation are displayed in Fig. 4. One can note that the neutral and cationic $C_6H_5BF_4$ resemble the structure of $C_6H_5F\cdots BF_3$ complex with the bond distance of 2.461 Å and 3.408 Å, respectively. In anion, we notice that BF₄ dissociates into F and BF₃ fragments which interact separately with the ring system (see Fig. 4). The C_6H_5-F bond length in $C_6H_5BF_4$ Download English Version:

https://daneshyari.com/en/article/5378145

Download Persian Version:

https://daneshyari.com/article/5378145

Daneshyari.com