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a b s t r a c t

The putative global minima of binary Morse clusters have been systematically determined using the par-
allel basin-hopping method. Clusters AðaÞnA

BðbÞnB
with a total size nA + nB ranging between 5 and 55 atoms

were studied for all (nA,nB) compositions, using a simple arithmetic combining rule for the range of
the potential between unlike elements. Several order parameters are evaluated in order to characterize
the global minima and to identify remarkable individuals. The stable structures generally show some
phase separation with the long-range element surrounded by the short-range element, but some degree
of mixing is found as well in order to minimize the overall strain. All clusters exhibit icosahedral features,
except at the total size of 38, where depending on the range and composition truncated octahedra are
found.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Among atomic and molecular clusters, binary clusters of chem-
ically similar elements have recently attracted a lot of attention,
owing to the possibilities offered by tuning the composition in
addition to size. Mixing elements at the nanoscale is particularly
promising for metals, especially as concerns with applications in
optoelectronics or catalysis [1]. At a more fundamental level, the
simpler bonding of the rare gases has made them appealing sys-
tems to understand the factors responsible for the variety of ob-
served behaviors ranging from full mixing (alloying) to phase
separation [2]. These factors are generally thought to predomi-
nantly include the size mismatch and the difference in surface
energies, however the kinetics may be of importance as well [1].

Binary clusters also pose a challenge to theoreticians, due to the
greater complexity of their potential energy landscapes arising
from the presence of the so-called homotops [3], or structures that
differ only in their chemical ordering. This complexity has lead to a
wealth of investigations aimed at characterizing the properties of
mixed clusters bound by simple potentials, typically of the embed-
ded-atom model (EAM) family for metals [4–10], or by Lennard–
Jones (LJ) pair potentials for the rare gases [11–17].

Besides the equilibrium distance and well depth, the range is a
defining feature of an interatomic potential with a strong influence
on structural [18–20], thermodynamical [21–23], and kinetic

[24,25] properties. Short-range potentials, which are found e.g. in
colloids [26,27] or in molecular clusters such as C60 [28], tend to fa-
vor close packing and destabilize liquids in favor of sublimation
[21]. In striking contrast, long-range potentials are more relevant
to interactions involving delocalized electrons or polarization ef-
fects, as in metals, and produce more disordered geometrical pat-
terns with higher coordination [29] and a greater resistance to
thermal dissociation [30]. The effects of the potential range on
the structure of clusters have mostly been addressed for homoge-
neous systems bound by shielded Coulomb [31,32] or Morse
[18,19,29,33,34] potentials. Binary clusters of Morse particles have
been studied by Parodi and Ferrando [35] who focused on the spe-
cific size of 38 known to possibly exhibit fcc-like structures [18].

In the present contribution, we extend this effort by systemat-
ically addressing the most stable energy minima of binary Morse
clusters containing up to 55 atoms, for all compositions and for
three sets of ranges. This work complements previous studies on
bimetallic clusters [6,36] in which the influence on the stable
cluster structures of the parameters of the heteronuclear interac-
tions, including the range, was systematically addressed. Here,
our analysis is based on several order parameters that are suited
to illustrate various features of the global minima, including geo-
metric properties such as the moments of the gyration tensor or
the bond-orientational order, the extent of chemical order through
mixing order parameters, and the energetics of mixing. Our results
generally show that mixed clusters are strongly phase separated in
a core/shell fashion, and that icosahedral order is favored, even for
short-range potentials. In agreement with Parodi and Ferrando
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[35], we also find that mixing different Morse particles destabilizes
octahedral order in the 38-atom clusters depending on range and
composition, rather than stabilizing this order in other sizes.

The article is organized as follows. In the next section, we
briefly describe the system under study and the methods used
for global optimization. The results are presented and discussed
in Section 3, before some concluding remarks are given in
Section 4.

2. Model and methods

Depending on its range, the Morse potential [37] is able to mi-
mic the interaction between various atoms or even molecules. For

a binary cluster AnA BnB with Cartesian coordinates {ri,i = 1 � � � nA +
nB}, we write the total interaction energy as

VðfrigÞ ¼
X
i<j

eije
qij rðijÞ0 �rijð Þ eqij rðijÞ0 �rijð Þ � 2

� �
; ð1Þ

where eij is the well depth, rðijÞ0 the equilibrium distance, and qij the
range associated with the pair interaction between particles i and j.
There are three types of interactions in our binary systems, involv-
ing A–A, B–B, and A–B pairs. Our purpose is to focus on the effect of
the range qij, hence we choose to take the well depths eij and equi-
librium distances rðijÞ0 to be identical for all pairs, and taken both as
unity. For the ranges, we have used the simple arithmetic combin-
ing rule qAB = (qAA + qBB)/2 already adopted by Parodi and Ferrando
[35].

The LJ potential is approximately equivalent to q = 6, and this is
commonly accepted as a medium-range interaction, whereas q = 3
and q = 9 are indicative of long- and short-range interactions,
respectively. We have thus considered the three following sets of
range parameters to define the mixed systems: (qAA,qBB) = (3,6),
(3,9), or (6,9), and in all cases A atoms have a longer-ranged
potential than B atoms. We note that those values span a broader
interval than the values used by the authors of Ref. [35], who were
more interested in modeling the behavior of metals. The variations
of the Morse potentials for q = 3, 4.5, 6, 7.5, and 9 are depicted in
Fig. 1 as a function of interparticle distance. For the sake of nota-
tions, we will thereafter denote as AðaÞnA

BðbÞnB
the cluster AnA BnB in

which qAA = a and qBB = b.
Putative lowest-energy structures were located using a parallel

extension [14] of the basin-hopping algorithm [38] with ideas
borrowed from parallel tempering Monte Carlo [39]. In this meth-
od, each replica is assigned a fixed composition, and random
moves are performed altering either the global geometry of the

Fig. 1. Morse potential for various ranges q, as used in the present model of binary
clusters.

Fig. 2. Two-dimensional map of (a–c) the mixing parameter l; and (d–f) the excess energy Eexc, for AðaÞnA
BðbÞnB

clusters as a function of nA and nB, for ranges (a,b) of (a,d) (3,6);
(b,e) (3,9); (c,f) (6,9). Green dots and numbers indicate particular structures that are depicted in Fig. 9. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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