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a b s t r a c t

By using the matrix diagonalization method within the effective-mass approximation, we have
investigated the second-order nonlinear optical rectification coefficient associated with intersubband
transitions in quantum dots and rings which include a repulsive scattering centre and are subjected to a
perpendicular magnetic field. Based on the computed energies and wave functions, we have studied the
effects of impurity and magnetic field in quantum dots and rings on this coefficient. The results show
that the nonlinear optical properties of quantum dots and rings are strongly affected by the external
magnetic field, the quantum size and the impurity. Also we find that the second-order nonlinear optical
rectification coefficient of quantum rings shows the Aharonov–Bohm oscillation as the external magnetic
field is increased.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Semiconductor quantum dots are one kind of useful quantum
structures which can be fabricated by directly self-organized
growth [1]. These systems exhibit phenomena reminiscent of
atoms (and are therefore commonly called artificial atoms)
and yet their size, shape, etc. can be controlled in the experiments.
The electronic and optical properties of these systems are essential
elements in developing the mesoscopic devices in the future [2].
A quantum ring is a quantum dot structure with a ‘hole’ in its
middle. Compared with quantum dots, quantum rings belong to
another kind of topological structures in which more rich phenom-
ena can be clearly shown [3–5]. Quite different from the conven-
tional submicron mesoscopic structures, the nanoscopic rings are
in the true quantum limit. The weak electron–electron interaction
in these rings makes them most suitable for the observed state
transitions can be well explained with the single-electron spec-
trum of a parabolic ring [6]. In addition, the ringlike confinement
breaks down the generalized Kohn theorem so that, unlike in
quantum dots, the excitation spectrum of quantum rings may
reveal electron–impurity interaction effects [7].

External perturbations such as the application of a magnetic
field, can provide much valuable information about the confined
systems [8]. Therefore the effect of a magnetic field on the electric
and optical properties of confined quantum systems is of great interest
for fundamental physics and device application. Since Maksym and
Chakraborty first reported the theoretical work on interacting electrons
in quantum dots subjected to a magnetic field [9], a large number of

papers on variations of quantum dots [10–16] and rings [17–20] have
been published. However, most of these theoretical studies involve
impurity-free quantum-confined few-electron systems. It is well
known that impurities play an essential role in semiconductor devices.
Shallow impurity increases the conductivity of a semiconductor by
several order of magnitude. Hence, in the recent years, the impurity
effects of low-dimensional semiconductors have increased consider-
ably mainly because of the great interest in the physics and techno-
logical applications. Recently, Pujari et al. studied impurity effects on
the electronic structure of quantum dots [21].

As compared in bulk semiconductors, the nonlinear optical
properties are greatly enhanced in the low-dimensional semicon-
ductors, which have been investigated both experimentally and
theoretically [22–27]. Among the nonlinear optical properties, the
second-order nonlinear optical property plays an essential role.
This is because it is the simplest and the lowest-order nonlinear
effects. Thus, it is interesting to investigate the second-order
nonlinear optical rectification coefficient (ORC) in low-dimen-
sional semiconductors in the presence of an external magnetic
field. In 2006, Baskoutas et al. investigated the exciton effects on
the nonlinear ORC in semiparabolic quantum dots [28]. Very
recently, Rezaei et al. have investigated the nonlinear ORC of a
two-dimensional quantum pseudodot system [29]. Also, Karabulut
et al. studied the combined effects of applied electric and magnetic
fields and hydrostatic pressure on the nonlinear ORC and optical
absorption in asymmetric double quantum wells [30]. In the
present work, we will focus on studying the second-order non-
linear ORC in quantum dots and rings which include a repulsive
scattering centre and are subjected to a perpendicular magnetic
field. To the best of our knowledge, the second-order nonlinear
ORC of quantum dots and rings with a repulsive scattering centre
has not been studied extensively in the literature.
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2. Theory

The system we study is one electron of effective mass me

moving in the ðx; yÞ plane confined by a parabolic potential and
subjected to a perpendicular magnetic field. We model the quan-
tum dots and rings as they are realized in the laboratory [3,4] by a
potential of the form VðrÞ ¼ 1

2meω2
0ðr−r0Þ2 where r0 is the radius of

the ring (r0 ¼ 0 for the dot). For such a system the Hamiltonian can
be written in the effective-mass approximation as

H¼ 1
2me

p!þ e
c
A
!� �2

þ 1
2
meω

2
0ðr−r0Þ2; ð1Þ

where e is the electric charge of an electron, c is the speed of light,

and ϵ is the dielectric constant. r! ( p!) is the position vector (the
momentum vector) of the electron, r0 is the radius of the ring
(r0 ¼ 0 for the dot), and ω0 defines the strength of the confinement
potential [4]. With the symmetric gauge for magnetic field

A
!¼ ðB=2Þð−y; x;0Þ, the Hamiltonian then reads
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where ω2 ¼ω2
0 þ ω2

c=4, ωc ¼ eB=cme is the cyclotron frequency, and
Lz is the z-component of the angular momentum. The impurity is
modelled by a Gaussian potential

VimpðrÞ ¼ V0 exp½−ðr−RÞ2=d2�; ð3Þ
where V0 is the potential strength, d is proportional to the width of
the impurity potential (the full width at half-maximum is ≈1:67d),

and R
!

is the position of the impurity. In the present work the

position of the impurity is located such that j R!j¼ r0.
The Hamiltonian has cylindrical symmetry which implies the

orbital momentum L is a conserved quantity, i.e., a good quantum
number. Hence, the eigenstates of this system can be classified
according to the orbital angular momentum L. To obtain the
eigenfunction and eigenenergy, the Hamiltonian is diagonalized
in the model space spanned by two-dimensional harmonic states

Ψ L ¼∑
i
ciϕω′

i ð r!Þ; ð4Þ

where ϕω′

i ð r
!Þ¼ Rniℓi ðrÞ expð−iℓiθÞ is ith eigen-state of the two-

dimensional harmonic oscillator with a frequency ω′ and an energy
ð2ni þ jℓij þ 1Þ ℏω′. RnℓðrÞ is the radial wave function, given by

RnℓðrÞ ¼N expð−r2=ð2a2ÞÞrjℓjLjℓjn ðr2=a2Þ; ð5Þ
in which N is the normalization constant, LℓnðxÞ is the associated
Laguerre polynomial, a¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmeω′Þ

p
and ℏ is the reduced Plank

constant. The radial and orbital angular momentum quantum
numbers can have the following values:

n¼ 1;2;…;ℓ¼ 0; 71; 72;…: ð6Þ
Here ω′ is an adjustable parameter, and is, in general, not equal
to ω.

Let N¼ 2nþ ℓ. Let fΨK g denote the set of basis functions
including all the ΨK having their N smaller or equal to an upper
limit Nmax. It is obvious that the total number of basis functions of
the set is determined by Nmax. After the diagonalization we obtain
the eigenvalues and the eigenvectors. Evidently, the eigenvalues
depend on the adjustable parameter ω′. In our calculation, ω′ serves
as a variational parameter to minimize the low-lying state energy.
The matrix diagonalization method consists in calculating the
matrix elements with the given basis and extracting the lowest
eigenvalues of the matrix generated. The better the basis describes
the Hamiltonian, the faster the convergence will be.

It is obvious that the wave functions in perturbative calculation
are not orthogonal states. Hence, our calculation is suitable only for

that the first-order corrections to the eigenfunctions should be very
small. This is sufficient in the regime of strong confinement. Based
on the density matrix approach and the perturbation expansion
method, the second-order nonlinear ORC is given by [28–31]

χð2Þ0 ¼
4ssM2
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where ss is the electron density and ϵ0 is the vacuum permittivity. T1
and T2 are the longitudinal and the transverse relaxation times,
respectively. And hυ is the photon energy. Mfi ¼ e〈Ψ f jrjΨ i〉 is the
electric dipole moment of the transition from the Ψ i state to the Ψ f

state, and δfi ¼ je〈Ψ f jrjΨ f 〉−e〈Ψ ijrjΨ i〉j. Efi is the transition energy
from the Ψ i state to the Ψ f state. In this work, for simplicity, we only
consider the transition between the L¼0 and the L¼1 states.

3. Results and discussion

Our numerical computation is carried out for one of the typical
semiconducting materials, GaAs, as an example with the material
parameters shown in the following:me ¼ 0:067m0 (wherem0 is the
single electron bare mass), and ϵ¼ 12:53. In addition, the relaxa-
tion times are set to T1 ¼ 1 ps, T2 ¼ 0:8 ps, and the electron density
is taken ss ¼ 5:0� 1024 m−3. The confinement potential strength is
chosen to be ℏω0 ¼ 4:0 meV and the parameters for the repulsive
Gaussian potential are V0 ¼ 32:0 meV and d¼ 5:0 nm [32]. With
these parameters the electrons are confined in a wide ring. Both
the effective radius and the width of this ring are about 20.0 nm for
a single electron.

In Fig. 1, we set r0 ¼ 0 (quantum dots) and plot the nonlinear
ORC in a quantum dot with a repulsive scattering centre as
a function of the incident photon energy for four different values
of the external magnetic field, i.e., B¼4.0, 6.0, 8.0, and 10.0 T,
respectively. From this figure we can find that the magnetic field
effect on the second-order nonlinear ORC is significant. We find
that all peak positions of ORC shift to higher energies (blue shift)
with increasing B. This blueshift occurs because the energy
difference Efi between the Ψ f and Ψ i states will increase with
increasing B. As seen in Fig. 1, we find that the nonlinear ORC first
increases with B up to a critical magnetic field value, B¼8.0 T, and
for further large B value it begins to decrease. Therefore, the
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Fig. 1. Variations of the second-order nonlinear ORC χð2Þ0 as a function of the
incident photon energy hυ for a quantum dot (r0 ¼ 0) including a repulsive
scattering center for four different values of the magnetic field.
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