
Journal of Molecular Liquids 229 (2017) 501–507

Contents lists available at ScienceDirect

Journal of Molecular Liquids

j ourna l homepage: www.e lsev ie r .com/ locate /mol l iq

Impact of chemical reaction on third grade fluid flow with
Cattaneo-Christov heat flux

Maria Imtiaza,*, Ahmed Alsaedic, Anum Shafiqb, Tasawar Hayatb, c

aDepartment of Mathematics, Mohi-Ud-Din Islamic University, Nerian Sharif AJ&K, Pakistan
bDepartment of Mathematics, Quaid-I-Azam University 45320, Islamabad44000, Pakistan
cNonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University 80203, Jeddah21589, Saudi Arabia

A R T I C L E I N F O

Article history:
Received 8 December 2016
Received in revised form 28 December 2016
Accepted 29 December 2016
Available online 31 December 2016

Keywords:
Third grade fluid
Cattaneo-Christov heat flux model
Stretching sheet
Chemical reaction

A B S T R A C T

The present article deals with the two-dimensional flow of third grade fluid induced by a linear stretching
sheet. Analysis of thermal relaxation time is made by using Cattaneo-Christov heat flux model. Effects of
chemical reaction are also taken into account. Suitable transformations lead to a strongly nonlinear differ-
ential system which is solved through homotopic technique. Convergent series solutions are derived. Effects
of the emerging parameters on the dimensionless velocity, temperature and concentration are investigated.
It is found that increasing values of thermal relaxation time corresponds to low temperature. Skin friction
coefficient and Sherwood number are also computed and addressed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Heat transfer phenomenon is quite significant in the industrial
and biomedical applications e.g. cooling of electronic devices, nuclear
reactor cooling, heat conduction in tissues, and energy production.
Characteristics of heat transfer have been explored by Fourier’s law
of heat conduction [1] in the last two centuries. One of the major
shortcomings of this model is that it produces a parabolic energy
equation which means that an initial disturbance would instantly
affect the system under consideration. To overcome this difficulty
Cattaneo [2] amended the Fourier’s law with the inclusion of ther-
mal relaxation time in the classical Fourier’s law which is defined
as the time required to establish steady heat conduction once a
temperature gradient is imposed. It is seen that such consideration
produces hyperbolic energy equation and it allows the transporta-
tion of heat through the propagation of thermal waves with finite
speed. After that Christov [3] modified the Cattaneo law by thermal
relaxation time along with Oldroyd’s upper-convected derivatives in
order to achieve the material-invariant formulation. Straughan [4]
studied Cattaneo-Christov model with thermal convection. Ciar-
letta and Straughan [5] proved the uniqueness of the solutions for
the Cattaneo-Christov equations. Tibullo and Zampoli [6]provided
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the uniqueness of Cattaneo-Christov heat flux model for flow of
incompressible fluids. Han et al. [7] presented stretched flow of
Maxwell fluid with Cattaneo-Christov heat flux model. Mustafa [8]
explored the characteristics of Cattaneo-Christov heat flux in the
rotating flow of Maxwell fluid. Impact of Cattaneo-Christov heat
flux in the flow over a stretching sheet with variable thickness has
been studied by Hayat et al. [9]. Hayat et al. [10] also examined
Cattaneo-Christov heat flux in MHD flow of Oldroyd-B fluid with
homogeneous–heterogeneous reactions.

Non-Newtonian fluids have been extensively acknowledged by
the investigators due to their large technological and industrial
applications like paper production, polymers, coal slurries, cosmet-
ics, oil recovery and mixture of clays etc. Non-Newtonian fluids
cannot be described by single constitutive relationship. Various fluid
models have been proposed to predict the salient features of non-
Newtonian fluids. Rate, differential and integral types are main
categories for the classification of these fluids. Third grade mate-
rial is subclass of differential type fluid. It illustrates the impact of
shear thickening/thinning property. Ramzan et al. [11] discussed the
flow of third grade fluid with homogeneous–heterogeneous reac-
tions. Wang et al. [12] studied MHD third grade fluid flow with heat
transfer due to parallel plates. Third grade fluid flow in the presence
of magnetic field is inspected by Hayat et al. [13]. Hussain et al. [14]
demonstrated incompressible flow of third grade fluid past a stretch-
ing sheet with viscous dissipation. Farooq et al. [15] discussed impact
of heat and mass transfer in third grade fluid flow due to stretching
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sheet. Li et al. [16] presented third grade fluid flow by rotating plates.
Abbasbandy and Hayat [17] discussed third grade fluid flow due to
stretching surface.

Boundary layer flows induced by a stretching surface with heat
and mass transfer have gained considerable interest due to their var-
ious industrial and engineering applications including aerodynamic
extrusion of plastic sheets, extrusion of polymer or rubber sheets or
filament from a die, glass blowing, continuous casting, cooling of an
infinite metallic plate in a cooling bath, etc. Heat transfer at the sheet
has a pivotal role on the quality of final product. Extensive research
has been undertaken for the stretching flows in different configu-
rations. Ibrahim et al. [18] presented MHD stagnation point flow
of nanofluid towards a stretching sheet. Malvandi et al. [19] exam-
ined slip effects on unsteady stagnation point flow of a nanofluid
over a stretching sheet. Nawaz et al. [20] studied Joules and New-
tonian heating effects on stagnation point flow over a stretching
surface. Majeed et al. [21] explored unsteady ferromagnetic liq-
uid flow and heat transfer analysis over a stretching sheet with
the effect of dipole and prescribed heat flux. Zeeshan et al. [22]
investigated effect of magnetic dipole on viscous ferro-fluid past a
stretching surface with thermal radiation. Maqbool et al. [23] ana-
lyzed Hall effect on Falkner-Skan boundary layer flow of FENE-P
fluid over a stretching sheet. Hayat et al. [24] examined stretched
flow of Walters’ B fluid with Newtonian heating. Lin et al. [25]
presented MHD pseudo-plastic nanofluid unsteady flow and heat
transfer in a finite thin film over stretching surface with internal heat
generation.

It is noted that chemical reaction effect in the flow by moving sur-
face is not given due attention even its various applications in bio
engineering and chemical industry. Very limited attention has been
paid to study the effect of chemical reaction in flow over stretching
surfaces which is useful in many industrial applications processes
including manufacturing of ceramics, food processing, polymer pro-
duction, drying, evaporation, energy transfer in a cooling tower and
the flow in a desert cooler. Hayat et al. [26] analyzed the unsteady
flow with heat and mass transfer of a third grade fluid over a stretch-
ing surface in the presence of chemical reaction. Matin and Pop [27]
studied the forced convection heat and mass transfer effects in flow
of nanofluid through a porous channel with first order chemical reac-
tion. The effects of chemical reaction and magnetic field in flow of
couple stress fluid over a non-linearly stretching sheet is examined
by Khan et al. [28]. Heat and mass transfer in MHD flow of nanofluid
with chemical reaction effects have been studied by Srikanth et
al. [29]. Mukhopadhyay [30] studied effects of partial slip on chemi-
cally reactive solute distribution in MHD boundary layer stagnation
point flow past a stretching permeable sheet.

There are many methods to solve the nonlinear problems. Homo-
topy analysis method (HAM) is firstly developed by Liao in 1992 [31].
He further modified [32] with a non-zero auxiliary parameter which
is also known as convergence control parameter. This parameter is
a non-physical variable that provides a simple way to verify and
ensure convergence of solution series. HAM always helps no mat-
ter whether there exist small/large physical parameters or not in
the problem statement. It provides a convenient way to guaran-
tee the convergence of approximation series. It also provides great
freedom to choose the equation type of linear sub-problems and
the base functions of solutions. The capability of the HAM to nat-
urally show convergence of the series solution is unusual in ana-
lytical and semi-analytic approaches to nonlinear partial differential
equations. Motivated by such facts, the purpose of this article is
to study heat and mass transfer in the flow of third grade fluid
over a stretching sheet with Cattaneo-Christov heat flux. Influence
of chemical reaction is also examined. Convergent solutions are
obtained by homotopy analysis method [33–38]. The behaviors of
different parameters on the physical quantities of interest have been
examined graphically.

2. Model development

Consider the steady two-dimensional flow of an incompressible
third grade fluid. Fluid flow is induced by a linear stretching sheet.
The sheet is stretched by two equal and opposite forces with the
velocity Uw(x) = ax. The x- and y-axes are taken along and perpen-
dicular to the sheet respectively and the flow is confined to a ≥ 0. The
sheet is kept at constant temperature Tw whereas T∞ being the ambi-
ent temperature such that Tw > T∞. Mass transfer analysis is carried
out in the presence of chemical reaction. In the absence of ther-
mal radiation and viscous dissipation, the boundary layer equations
governing the flow can be expressed as follows:
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The corresponding boundary conditions are

u = Uw(x) = ax, v = 0, T = Tw, C = Cw at y = 0,

u → 0, T → T∞, C → C∞ as y → ∞, (5)

where u and v represent velocity components along the x- and y-
directions respectively, m the kinematic viscosity, a∗

1, a∗
2 and b∗

3 the
material parameters, q the fluid density, cp the specific heat, q the
heat flux, C the concentration, Cw the fluid wall concentration, C∞ the
ambient fluid concentration, Dm the diffusion coefficient and km the
first order chemical reaction parameter. Following [3] the heat flux q
is given by
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in which k is the thermal relaxation time and k the thermal conduc-
tivity of fluid. Note that Eq. (6) simplified to Fourier’s law for k = 0.
Since the fluid is incompressible so ∇.V = 0 and we have
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Eliminating q between Eqs. (3) and (7), we obtain following
governing equation:
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We employ the following transformations

g =
√

a
m

y, X = x
√
maf (g), h(g) =

T − T∞
Tw − T∞

, 0(g) =
C − C∞

Cw − C∞
,

(9)



Download	English	Version:

https://daneshyari.com/en/article/5409178

Download	Persian	Version:

https://daneshyari.com/article/5409178

Daneshyari.com

https://daneshyari.com/en/article/5409178
https://daneshyari.com/article/5409178
https://daneshyari.com/

