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Wehave investigated the influence of different control oxidematerials on the charging times ofmetal nanoparticles
(mNP) inside a [Si/SiO2/(mNP)/Control-Oxide/gate] non-volatile memory (NVM) in which the control oxide can
have a higher dielectric constant ε than that of SiO2 like HfO2 or Al2O3 as is the case in practice frequently. Our cal-
culations are performed for bothN-type and P-type substrates.We have used a previously published 3-dimensional
Wentzel–Krammers–Brillouin (WKB)method of ours, which does not contain such adjustable parameters as effec-
tive area or capture cross-section which other 1-dimensional theories use. To obtain the total time for the charging
of theNVMto saturationwe calculate the times that successive electrons take to be incorporated into anmNPunder
a given applied voltage and agivenduration of the charging pulse, each timeupdating the tunneling potential due to
the incorporation of the extra electron into themNP.We obtain an exponential dependence of these charging times
on the dielectric constant of the control oxide for which we offer a simple explanation. The change with substrate
type is on the other hand less pronounced. Our results are confirmedby experiment. In particular,whenourmethod
is applied to NVMs with SiO2 and HfO2 as the control oxide we obtain good agreement with experiment without
using such adjustable parameter as effective area of emission. We finally show that if the fraction of the substrate
area that is covered with mNP is used to estimate this parameter the error involved will be quite significant, i.e. a
factor of 5 approximately.
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1. Introduction

In a previous paper [1] we proposed a method for calculating the
charging times of metal nanoparticles (mNPs) embedded in a dielectric
matrix together with the total number of electrons that these nanopar-
ticle can accommodate according to the limitations of the coulomb
blockade theory [2]. Our method differs from previous methods in
that there are no adjustable parameters which are usually in the form
of an effective area. This was accomplished by using a 3-dimensional
tunneling theorywhich could calculate quantummechanically the elec-
tron paths from the doped Si substrate to the metal surface. As a result
we could calculate the exact current surface density J impinging on
the metal nanoparticle and hence the total current I. In [1] we applied
our method to the Si/SiO2/mNPs/SiO2 system on an N-type Si substrate.
However most Si based NVMs use P-type substrates [3,4] and further-
more other NVM units have been proposed — see Fig. 1 — which use
as control oxide HfO2 or Al2O3 [4,5]. These high dielectric constant
oxides can induce substantial changes to the behavior of the NVM
cells: a) because of their higher capacitance (compared to SiO2) they

can accommodate a higher number of electrons per mNP and most
importantly b) they allow a higher percentage of the applied voltage
VG to be dropped along the tunneling oxide. Hence the charging time
is heavily reduced. Furthermore the above factors depend exponentially
on the tunneling oxide thickness. The study of these phenomena is the
subject of this paper. Furthermore an extensive and critical comparison
with available experimental data is made.

As in our previous publication there are no adjustable parameters in
our calculations. The only numerical inputs to our calculation are a) the
band-edge offsets between the oxides and Si and b) the Schottky barrier
between themNPand the oxides. These arewell known (and at any rate
they are not varied during our calculations).

2. Method

Our method has been presented in a previous publication [1], so we
only give a brief description here emphasizing physical ideas and the
basic differences from previous treatments. The first step is to calculate
the potential energy inside the semiconductor and dielectrics self-
consistently. This is done by solving the Poisson equation:

∇2V ¼ −ρ
εrε

ð1Þ
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together with the usual semiconductor expression for the electron
density:

n ¼ NC F1=2
EF−EC

kT

� �

p ¼ NV F1=2
EV−EF

kT

� �
ρ ¼ e p−nþ Nþ

D−N−
A

� �
:

ð2Þ

In the above equations the symbols have their conventional mean-
ing and EF is the quasifermi level of the electrons EFn for N-type sub-
strates or the quasifermi level EFp of the holes for P-type substrates.

The Poisson equation is solved in a unit cell using periodic boundary
conditions [1]. This ansatz neglects variations from one cell to another
(in the spacing and radius of the mNPs) but it is the best that can be
done under the circumstances. The band diagram is obtained directly
from the Poisson solution by simply adding the appropriate discontinu-
ities at each interface, i.e. either the band edge offsets or the correspond-
ing Schottky barriers. Once the Poisson potential is known the quantum
mechanical (i.e. most probable) path of each electron on its way from Si
to the mNP through the dielectric barrier (see Fig. 1) can be calculated
using a 3-dimensional WKB method developed by Peierls and Kapur
[6] and later by Das and Mahanty [7]. Then the transmission coefficient
along a path (say C) is given by the path integral relations

T ¼ ∇Vj jr¼r2

∇Vj jr¼r1

" #1=2

exp −T12ð Þ

T12 ¼ 2
ħ

Zr2
r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m V rð Þ−E½ �

p
dr:

ð3Þ

The path, say C, (not a straight line), starts at point r1 in Si and ends at
r2 on the metal surface. Given T(C) the current density J along this path
can be calculated using the Landauer formula [8]. The usefulness of the
above procedure is that the current density J(r) impinging on themetal
surface can be evaluated. Then the total current can be computed by a
simple arithmetic surface integral without the need of parameters
such as “effective area”, “capture cross section” and so on. Then the
extra time to put the nth electron in the mNP is Δtn = e/Jn. Note that
we write Δtn because the time to put the nth electron in the mNP —
when (n-1) electrons are already in — is different at each nth stage
and so is Jn. At every stage of charging we recalculate the potential
self-consistently. Electrons here tunnel one by one. The process of
charging is stopped when the electric field reverses direction. Then
tunneling in the opposite direction would result. This is the general

condition of the Coulomb blockade theory fromwhich the usual simpli-
fied formula for the allowed number of electrons Nmax in an mNP:

CCOVGNe Nmax−1=2ð Þ ð4Þ

(where CCO = control oxide capacitance) is derived. However this sim-
plified formula Eq. (4), assumes metal electrodes while in our case we
have an N-doped or P-doped Si substrates (with a potential drop inside
it), so Eq. (4) cannot be used and themore general electric field reversal
(or energy lowering) condition is used.

3. Results

Our calculated band-diagrams along a vertical direction passing
through the center of a sphere for d=3.5nmandVG=5Vwhen 3 elec-
trons reside in the mNP are shown in Fig. 2a and b for a SiO2/mNP/SiO2

unit with N- and P-type substrates respectively and in Fig. 2c and d for a
SiO2/mNP/HfO2 unit likewise. Note that because our calculated poten-
tial varies in 3 dimensions the band diagram will differ from vertical
line to vertical line from the substrate to the gate. For the relative dielec-
tric constants of SiO2 and HfO2 we have taken the values 3.9 and 25 re-
spectively. The Schottky barriers of the oxides to the mNP have been
taken to be equal to their “perfect crystal” values of half the band gap,
i.e. 4.45 eV for the SiO2/mNP interface and 2.65 eV for the HfO2/mNP
interface respectively.

It is important at this stage to analyze the differences observed in
Fig. 2a–d as these will form the basis for the explanation for the rest of
results on charging times to follow. The main difference lies in the
higher electric field in the tunneling region and consequently the lower-
ing of the tunneling barrierwhenHfO2 is substituted for SiO2 as the con-
trol oxide of the NVM. This is due entirely to the high ε of HfO2 which
allows a higher portion of the applied voltage to be dropped along the
tunneling oxide of the NVM. (Note that the barrier is given by the area
under the potential curve according to theWKB Eq. (3) above.) By con-
trast the type of the substrate has a lower effect on the barrier shape al-
though it should be noticeable that an N-type substrate facilitates
tunneling to the mNPs compared to a P-type substrate and this differ-
ence is more pronounced in the HfO2 containing NVM. Note also that
in our calculation of the transmission coefficient (Eq. (3)) we have in-
cluded the necessary image corrections to the potential V(x,y,z). Given
now the latter we can calculate the electron paths using the 3D-WKB
approximation and then the corresponding transmission coefficient T
for each path and finally the current. Such typical paths may be found
in our previous publication [1].

Fig. 3 gives the time tN (=ΣΔtn) it takes to charge eachmNP succes-
sively with N electrons at constant applied voltage VG = 8 V when the
control oxide of theNVMunit is SiO2, Al2O3 andHfO2. For the relative di-
electric constant of Al2O3 we have taken the value 9.0. The nanoparticle
radius R and spacing b between nanoparticles have been chosen to be
the same as in the experimental investigation of Lee et al. [10] for a
Si/SiO2/mNP/SiO2 NVM. The calculations in this figure for the other
types of control oxide NVMs are intentionally performed with the
same R and b for the purposes of comparison. Calculations with values
of R, b of experimental devices with HfO2 as control oxide follow
below. Since geometrical values are the same, the variations in this
figure come exclusively from the fact that as the ε of the control oxide
increases a higher proportion of VG drops along the tunneling region
in accordance with the results of Fig. 2. It can be seen that the charging
times vary by 4 orders of magnitude. In particular they may vary from
1 msec to several seconds. Furthermore each mNP of the HfO2 cell
can accommodate several electrons, not just 1 or 2. This is a result of
its high dielectric constant and the Coulomb blockade condition (as
noted above, approximately CCOVG N e(Nmax− 1/2)) but this maximum
is rarely attained in experiments. We note again that in our calculations
themaximum is obtained by themore general condition of electric field
reversal which simplifies to the above condition when the tunneling

Fig. 1. Schematic of the unit cell under study showing lengths, types of materials and
charging process.
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