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We have developed numerical simulations of three dimensional suspensions of active particles to characterize
the capabilities of the hydrodynamic stresses induced by active swimmers to promote global order and emer-
gent structures in active suspensions.We have considered squirmer suspensions embedded in a fluidmodeled
under a Lattice Boltzmann scheme. We have found that active stresses play a central role to decorrelate the
collective motion of squirmers and that contractile squirmers develop significant aggregates.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Collectivemotion can be observed at a variety of scales, ranging from
herds of large to bacteria colonies or the active motion of organelles in-
side cells. Despite the long standing interest of the wide implications of
collectivemotion in biology, engineering andmedicine (as for example,
the ethological implications of the signals exchanged between moving
animals, the evolutionary benefits of moving in groups for individuals
and for species, the design of robotswhich can accomplish a cooperative
tasks without central control, the understanding of tumor growth or
wound healing to mention a few), only recently there has been a grow-
ing interest in characterizing such global behavior from a statistical
mechanics perspective [1].

Although a variety of ingredients andmechanisms has been reported
to describe the signaling and cooperation among individuals which
move collectively, it is important to understand the underlying, basic
physical principles that can provide simple means of cooperation and
can lead to emerging patterns and structures [2]. We want to analyze
the capabilities of basic physical ingredients to generate emerging struc-
tures in active particleswhich self propel in an embedding fluidmedium.
These systems constitute an example of active fluids, systems which
generate stresses by the conversion of chemical into mechanical energy.
To this end, we will consider model suspensions of swimming particles
(building on the squirmer model introduced by Lighthill [3]) and will
analyze a hydrodynamically-controlled route to flocking. We will use
a hybrid description of an active suspension, which combines the
individual dynamics of spherical swimmers with a kinetic model for
the solvent. We can identify the emergence of global orientational
order and correlate it with the formation of spontaneous structures
where squirmers aggregate and form flocks of entities that swim along

together. This simplified approach allows us to identify the role of
active stresses and self-propulsion to lead both to global orientational
order and aggregate formation. Even if in real systems other factors can
also control the interaction and collective behaviors of active suspen-
sions, the present description shows that hydrodynamics itself is enough
to promote cooperation in these systems which are intrinsically out of
equilibrium.

This work is organized as follows. In Section 2.1 we present the
theoretical frame of the simulation technique that we have applied,
while in Section 2.2 we describe the squirmer model that we have
used and introduce the relevant parameters which characterize its
hydrodynamic behavior and in Section 2.3 we give a detailed expla-
nation of the simulation parameters and the systems we have stud-
ied. Section 3 is devoted to analyze the global polar order parameter
and to study quantitatively the orientation that squirmer suspensions
display. In Section 4 flocking is studied via generalized radial distribu-
tion functions, moreover to characterize the time evolution of the
formedflocks,we calculated the time correlation function of the density
fluctuations, and the results are shown in this section also.We conclude
in Section 5 indicating the main results and their implications.

2. Theoretical model

2.1. Lattice Boltzmann scheme

We consider a model for microswimmer suspensions composed
by spherical particles embedded in a fluid. The fluid is modeled
using a Lattice Boltzmann approach. Accordingly, the solvent is de-

scribed in terms of a distribution function f i r
→
; t

� �
in each node of

the lattice. The distribution function evolves at discrete time steps,
Δt, following the lattice Boltzmann equation (LBE):

f i r
→ þ c

→
iΔt; t þ Δt

� �
¼ f i r

→
; t

� �
þ

Ωij f eqj r
→
; t

� �
− f j r

→
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that can be regarded as the space and time discretized analog of the
Boltzmann equation. It includes both the streaming to the neighbor-
ing nodes, which corresponds to the advection of the fluid due to its
own velocity, and the relaxation toward a prescribed equilibrium
distribution function fj

eq. This relaxation is determined by the
linear collision operator Ωij [4–6]. It corresponds to linearizing the
collision operator of the Boltzmann equation. If Ωij has one single ei-
genvalue, the method corresponds to the kinetic model introduced by
Bhatnagar–Gross–Crook (BGK) [7]. The LBE satisfies the Navier–
Stokes equations at large scales. In all our simulations we use units
such that the mass of the nodes, the lattice spacing and the time
step Δt are in unity and the viscosity is 1/2, the lattice geometry
that we have used was a cubic lattice with 19 allowed velocities, bet-
ter known as D3Q19 scheme [5].

The linearity and locality of LBE make it a useful method to study
the dynamic of fluids under complex geometries, as is the case when
dealing with particulate suspensions. Using the distribution function
as the central dynamic quantity makes it possible to express the
fluid/solid boundary conditions as local rules. Hence, stick boundary
conditions can be enforced through bounce-back of the distribution,

f i r
→
; t

� �
, on the links joining fluid nodes and lattice nodes inside the

shell which defines the solid particles, also known as boundary links
[8]. A microswimmer is modeled as a spherical shell larger than the
lattice spacing. Following the standard procedure, the microswimmer
is represented by the boundary links which define its surface. Ac-
counting for the cumulative bounce back of all boundary links allows
to extract the net force and torque acting on the suspended particle
[9]. The particle dynamics can then be described individually and
particles do not overlap due to a repulsive, short-range interaction
among them, given by

vss rð Þ ¼ � σ=rð Þν0 ; ð2Þ

where � is the energy scale, and σ the characteristic width. The steep-
ness of the potential is set by the exponent ν0. In all cases we have
used �=1.0, σ=0.5 and ν0=2.0.

2.2. Squirmer model

We follow the model proposed by Lighthill [3], subsequently im-
proved by Blake [10], for ciliated microorganisms. In this approach,
appropriate boundary conditions to the Stokes equation on the sur-
face of the spherical particles (of radius R) are imposed to induce a
slip velocity between the fluid and the particles. This slip velocity
determines how the particle can displace in the embedding solvent
in the absence of a net force or torque. For axisymmetric motion of
a spherical swimmer, the radial, vr and tangential, vθ components of
the slip velocity can be generically expressed as

vr jr1¼R ¼
X∞

n¼0

An tð ÞPn
e1⋅r1
R

� �
;

vθjr1¼R ¼
X∞

n¼0

Bn tð ÞVn
e1⋅r1
R

� �
;

ð3Þ

n-th at the squirmer spherical surface, where Pn stands for the n-th
order Legendre polynomial and Vn is define as

Vn cosθð Þ ¼ 2
n nþ 1ð Þ sinθP

′
n cosθð Þ; ð4Þ

e1 describes the intrinsic director, which moves rigidly with the par-
ticle and determines the direction along which a single squirmer will

displace, while r1 represents the position vector with respect to the
squirmer's center, which is always pointing the particle surface and
thus |r1|=R. Since the squirmer is moving in an inertialess media,
the velocity u and pressure p of the fluid are given by the Stokes
and continuity equations

∇p ¼ ν∇2u; ∇⋅u ¼ 0: ð5Þ

The velocity field generated by the squirmer is the solution of
this Eq. (5) under the boundary conditions specified by the slip veloc-
ity in the surface of its body, Eq. (3). We will disregard the radial
changes of the squirming motion, and will consider An=0, to focus
on a simple model that captures the relevant hydrodynamic features
associated to squirmer swimming. Accordingly, we will also disregard
the time dependence of the coefficients Bn and will focus on the mean
velocity of a squirmer during a beating period [11]. Hence, from the
solution of Eq. (5) using the slip velocity as a boundary condition
(Eq. (3)), we can write the mean fluid flow induced by a minimal
squirmer as

u1 r1ð Þ ¼ −1
3
R3

r31
B1e1 þ B1

R3

r31
e1⋅ r̂1 r̂1−

R2

r21
B2P2 e1⋅ r̂1

� �
r̂1;

ð6Þ

where we have taken Bn=0, n>2, keeping only the first two terms
in the general expression for the slip velocity, Eq. (3). The two non-
vanishing terms account for the leading dynamic effects associates
to the squirmers. While B1 determines the squirmer velocity, along
e1, and controls its polarity, B2 stands for the apolar stresses that are
generated by the surface waves [12]. The dimensionless parameter
β≡B2/B1 quantifies the relative relevance of apolar stresses against
squirmer polarity. The sign of β (determined by that of B2) classifies
contractile squirmers (or pullers) with β>0 and extensile squirmers
(or pushers) when βb0. The limiting case when B1=0 corresponds
to completely apolar squirmers (or shakers [13]) which induce fluid
motion around them without self-propulsion. The opposite situation,
when B2=0 corresponds to completely polar, self-propelling, squirmers
which do not generate active stresses around them. We will disregard
thermal fluctuations; therefore B1 and B2 are the two parameters which
completely characterize squirmer motion.

2.3. Simulation details

All the results that we will discuss correspond to numerical simu-
lations consisting of N identical spherical particles in a cubic box of
volume L3 with periodic boundary conditions. In all cases we have
considered N=2000, R=2.3 and L=100 (expressed in terms of the
lattice spacing). This corresponds to a volume fraction ϕ=4πNR3/
(3L3)=1/10, with a kinematic viscosity of ν=1/2 (in lattice units)
[14]. As we will analyze subsequently, active stresses play a signifi-
cant role in the structures that squirmers develop when swimming
collectively. In Fig. 1 we compare characteristic configurations of sus-
pensions for completely polar, contractile and extensile squirmers.
Apolar stresses favor fluctuations in the squirmer concentration and
for contractile squirmers there is a clear tendency to form transient,
but marked, aggregates. The figure also shows that one needs to dis-
tinguish between how squirmers align to swim together and how do
they distribute spatially. In the following section we will analyze how
active stresses interact with self-propulsion to affect both aspects of
collective swimming.
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